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Abstract 

Time series forecasting can be enhanced by integrating various data modalities beyond the past observations of 

the target time series. This paper introduces the Multimodal Block Transformer, a novel architecture that incorporates 

multivariate time series data alongside multimodal static information, which remains invariant over time, to improve 

forecasting accuracy. The core feature of this architecture is the Block Attention mechanism, designed to efficiently 

capture dependencies within multivariate time series by condensing multiple time series variables into a single uni-

fied sequence. This unified temporal representation is then fused with other modality embeddings to generate a non-

autoregressive multi-horizon forecast. The model was evaluated on a dataset containing daily movie gross revenues 

and corresponding multimodal information about movies. Experimental results demonstrate that the Multimodal 

Block Transformer outperforms state-of-the-art models in both multivariate and multimodal time series forecasting. 

 

1. Introduction 

Multivariate time series data can be processed using vari-

ous methods. One common approach involves concatenating 

the time series variables along the feature dimension, ex-

pressed as: 

[𝑋1, … , 𝑋𝑛] ∈ ℝ𝑡×𝑛𝑑,  𝑋𝑛 = [𝒙𝑛,1, … , 𝒙𝑛,𝑡]
𝑇

,  𝒙𝑛,𝑡 ∈ ℝ𝑑 , (1) 

where 𝑋𝑛  represents the 𝑛 -th time series variable with 𝑡 

time steps and 𝑑  dimensions. However, this approach as-

sumes that all variables contribute equally over time, neglect-

ing potential variations in the importance of each variable at 

different time steps. For instance, in a multivariate time series 

forecasting scenario involving product price and the day of the 

week as variables for predicting sales, the importance of each 

variable may change depending on the context. On days when 

discounts are offered, price might be the dominant factor, 

whereas on weekends, the day of the week could have a larger 

impact due to increased customer traffic. 

The attention mechanism provides a promising solution for 

this problem by capturing the dynamic importance of variables 

over time. However, applying attention to multivariate time 

series requires an alternative concatenation strategy such as: 

[𝑋1
𝑇 , 𝑋2

𝑇, … , 𝑋𝑛
𝑇]𝑇 ∈ ℝ𝑡𝑛×𝑑 , (2) 

to enable attention computation across both different time se-

ries variables and time steps. A key challenge with this ap-

proach is the computational complexity of the attention mech-

anism, which scales quadratically with sequence length. Ap-

plying attention to the concatenated sequence requires (𝑡𝑛)2 

operations, meaning that for each additional sequence element, 

𝑛2(2𝑡 + 1) additional operations are needed: 

(𝑡 + 1)2𝑛2 = 𝑡2𝑛2 + 𝑛2(2𝑡 + 1). (3) 

Similarly, introducing an additional time series variable adds 

𝑡2(2𝑛 + 1) operations: 

𝑡2(𝑛 + 1)2 = 𝑡2𝑛2 + 𝑡2(2𝑛 + 1). (4) 

These equations highlight the need for a more sophisticated 

approach to manage attention in multivariate time series, as 

naïve concatenation becomes computationally expensive, par-

ticularly for large-scale datasets. 

Another important consideration is the forecasting strategy. 

The traditional Transformer [1] employs an autoregressive ap-

proach, where each prediction relies on previous outputs. This 

autoregressive nature can lead to error accumulation in time 

series forecasting, which is more problematic compared to 

language transduction tasks, for which the Transformer was 

originally designed. 

 
(Figure 1) Process overview of multimodal time series forecasting. 

 

This paper proposes the Multimodal Block Transformer, a 

novel architecture that integrates multivariate time series data 

with multimodal static data, such as images, text, and tabular 

metadata that remain consistent over time. As illustrated in 
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(Figure 1), the Multimodal Block Transformer employs an en-

coder-decoder structure, with the encoder processing past 

multivariate time series alongside static multimodal data. The 

decoder fuses these encodings with future-known multivariate 

time series, which can be predetermined such as the day of the 

week, to produce a non-autoregressive multi-horizon forecast 

that predicts multiple future time steps simultaneously. 

Using a dataset collected from the web, which includes 

movie gross revenues and detailed movie-related information, 

this paper demonstrates that the Multimodal Block Trans-

former significantly outperforms existing benchmarks in both 

multivariate and multimodal times series forecasting. 

 

2. Related Works 

2.1 Temporal Fusion Transformer 

The Temporal Fusion Transformer (TFT) [2] is a state-of-

the-art deep learning model designed specifically for interpret-

able multivariate time series forecasting. TFT is capable of 

processing heterogeneous data, including both known and ob-

served time-varying inputs, as well as time-independent static 

features. It effectively addresses the complexity of multivari-

ate time series forecasting through its novel architecture, 

which incorporates a Gating mechanism, Variable Selection 

Networks, Static Covariate Encoders, and Temporal Pro-

cessing layers. 

Despite its sophisticated design, TFT is primarily suited for 

tabular, structured data and does not extend its functionality to 

multimodal data. 

 

2.2. GTM-Transformer 

The GTM-Transformer [3] is designed for multimodal time 

series forecasting, particularly in scenarios where historical 

sales data is unavailable, such as predicting sales for new prod-

ucts. It leverages Google Trends data from the period before a 

product launch, along with visual and metadata information 

about the product. While the GTM-Transformer effectively 

handles both multivariate time series and multimodal data, its 

design focuses primarily on new product forecasting, which 

limits its ability to utilize historical time series information. 

Additionally, the GTM-Transformer employes a simple con-

catenation strategy during the early fusion stage, where fea-

tures from different modalities are merely concatenated at the 

input level. This approach constrains the model’s capacity to 

capture complex relationships and interactions between the 

various features. 

 

3. Model Architecture 

The Multimodal Block Transformer processes multivariate 

time series data in a similar manner to the Temporal Fusion 

Transformer. It categorizes time series variables into three 

types: the target time series 𝑌, the observed time series 𝑉𝑚𝑣, 

which can only be measured at each time step, and the known 

time series 𝑍𝑚𝑧, which can be predetermined such as the day 

of the week at time step 𝑡. The variables 𝑌, 𝑉𝑚𝑣 and 𝑍𝑚𝑧 

are used to encode historical temporal information, while only 

𝑍𝑚𝑧 is used for encoding future temporal information. Addi-

tionally, a learnable sequence of embeddings 𝐺, referred to as 

the global temporal embedding, is introduced to aggregate 

multiple time series variables into a single sequence of vectors. 

Each time series variable is represented as a matrix in 

ℝ(𝑗−𝑖+1)×𝑑. For example, the observed time series variable can 

be expressed as: 

𝑉𝑖:𝑗
𝑚𝑣 = [𝒗𝑖

𝑚𝑣 , 𝒗𝑖+1
𝑚𝑣 , … , 𝒗𝑗

𝑚𝑣]
𝑇

,   𝒗𝑡
𝑚𝑣 ∈ ℝ𝑑 , (5) 

for each time step 𝑡 = 𝑖, … , 𝑗, and positional encoding is ap-

plied before being fed into the model. 

 
(Figure 2) Architecture of Multimodal Block Transformer 

 

3.1 Temporal Block Encoder 

 

(Figure 3) Components of the Temporal Block Encoder 

 

As illustrated in (Figure 3), the Temporal Block Encoder 

comprises three main operations: 

Intra-Temporal Block Operation captures relationships 

between different time series variables within each single time 

step. It combines multiple time series variables into a block 

matrix representation, which can be divided into submatrix 
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blocks. The resulting matrix can be expressed as: 

 IntraTimeBlock(𝐺i:j, 𝑋𝑖:𝑗
1 , … , 𝑋𝑖:𝑗

𝑚𝑥)                  

=  [[𝒈𝑖 , 𝒙𝑖
1 … , 𝒙𝑖

𝑚𝑥]
𝑇

; … ; [𝒈𝑗 , 𝒙𝑗
1, … , 𝒙𝑗

𝑚𝑥]
𝑇

] . (6)
 

Inter-Temporal Block Operation focuses on capturing re-

lationships across time steps. It concatenates the time series 

across the sequence from time step 𝑖 to 𝑗, forming a block 

matrix that reflects temporal dependencies across time steps: 

 InterTimeBlock(𝐺i:j, 𝑋𝑖:𝑗
1 , … , 𝑋𝑖:𝑗

𝑚𝑥)                       

 

=  [[𝒈𝑖 , 𝒈𝑖+1 … , 𝒈𝑗]
𝑇

; … ; [𝒙𝑖
𝑚𝑥 , 𝒙𝑖+1

𝑚𝑥 , … , 𝒙𝑗
𝑚𝑥]

𝑇
] .

(7)
 

Block Attention mechanism applies attention across block 

matrix 𝐵 = [𝑆1, 𝑆2, … ]  and its transpose 𝐵𝑇 = [𝑆1
𝑇 , 𝑆2

𝑇 , … ] , 

where 𝑆𝑖 represents the submatrix blocks produced through 

either the Intra-Temporal or Inter-Temporal Block Operation. 

Each submatrix captures a specific aspect of the temporal and 

multivariate relationships. The Block Attention mechanism 

computes attention scores using a block-wise dot product op-

eration, allowing the model to focus both on important tem-

poral and multivariate relationships within the time series data: 

BlockAttention(𝐵) = softmax (
𝐵◎𝐵𝑇

√𝑑
)◎𝐵, (8) 

where ◎ denotes the block-wise dot product operation. 

The Temporal Block Encoder requires 𝑡𝑛2 + 𝑡2𝑛  opera-

tions for computing the attention score as the number of oper-

ations required for Inter-Temporal and Intra-Temporal Block 

Attention are 𝑡𝑛2  and 𝑡2𝑛  respectively. It is 
𝑡+𝑛

𝑡𝑛
  of the 

computations required for naïve concatenation strategy. As 𝑡 

and 𝑛 increase, this approach significantly reduces computa-

tional cost compared to equations (3) and (4). This reduction 

not only alleviates the computational burden but also enhances 

the model’s ability to learn meaningful patterns across multi-

variate time series. 

 

3.2 Multimodal Encodings 

Before integrating multimodal data with the output of the 

Temporal Block Encoder, the data undergoes processing to en-

hance self-representation. 

The image encoding module utilizes the Vision Trans-

former (ViT) architecture [4] to extract image patch embed-

dings 𝐼 ∈ ℝ𝑚𝑖×𝑑 , where 𝑚𝑖 =
𝐻𝑊

𝑃2   with (𝐻, 𝑊)  represent-

ing the resolution of the original image and (𝑃, 𝑃) the reso-

lution of each image patch. Thus, 𝑚𝑖 denotes the number of 

image patches. 

The text encoding module uses the BERT architecture [5] 

to extract language token embeddings 𝑇 ∈ ℝ𝑚𝑡×𝑑, where 𝑚𝑡 

denotes the number of tokens in the text. 

The metadata encoding module relies on the standard 

Transformer architecture and is represented as: 

𝑀 = Transformers([𝑚1, 𝑚2, … , 𝑚𝑚𝑚]𝑇 + 𝐸mod), (9) 

where 𝐸mod ∈ ℝ𝑚𝑚×𝑑  represents the modality embeddings 

and 𝑚𝑚𝑚 ∈ ℝ𝑑 represents the metadata inputs. 

 

3.3 Multimodal Block Decoder 

The fusion process integrates the future-known temporal 

encodings with other modality encodings using the cross-at-

tention mechanism. As illustrated in (Figure 2), the global 

temporal embedding 𝐺𝑡+1:𝑡+𝜏  and future-known inputs 

𝑍𝑡+1:𝑡+𝜏
1 , … , 𝑍𝑡+1:𝑡+𝜏

𝑚𝑧     are processed using Intra-Temporal 

and Inter-Temporal Block Attention. This is then fused with 

concatenated modality encodings through the cross-attention, 

enabling the model to attend to and integrate information from 

multiple modalities. After processing this through the MLP 

layer, the model produces multi-horizon forecasts for multiple 

future time steps �̂�𝑡+1:𝑡+𝜏 = {�̂�𝑡+1, �̂�𝑡+2, … , �̂�𝑡+𝜏}, effectively 

mitigating the error accumulation problem commonly associ-

ated with regression tasks. 

 

4. Experiment 

4.1 Data 

To evaluate the performance of the Multimodal Block 

Transformer, a dataset was compiled, consisting of movie 

gross revenues and detailed movie information, including the 

main poster, synopsis, directors, and casts for each movie. 

This data was collected from the web, covering box office re-

sults in North America from 2005 to 2019. This time range 

was specifically chosen to avoid distortions in patterns caused 

by the COVID-19 pandemic. 

Rather than augmenting the time series data using the tra-

ditional window-shifting method, which involves sliding a 

fixed-length window across the time steps, a method of select-

ing random sequence lengths was employed. Since each 

movie has a different length of sales sequence, using window-

shifting could result in movies with longer sequences domi-

nating the dataset, potentially misleading the model during 

training. By applying random length selection, similar to the 

concept of random cropping in image augmentation, the dis-

tribution of movies remains consistent while allowing the 

model to observe various input lengths during training epochs. 

Unlike random cropping in images, where the crop is taken 

from a random position, the sequence always starts from the 

first time step, with only the length varying. This approach en-

ables the model to forecast time steps of varying lengths based 

on different lengths of historical data inputs. 

 

4.2 Results 

As shown in <Table 1>, the Multimodal Block Transformer 

outperformed other models in terms of Mean Squared Error 

(MSE). While the proposed model with full modality achieved 

the best performance, the version using only temporal infor-

mation also performed exceptionally well, achieving better re-

sult than both the TFT and the GTM-Transformer. The strong 

performance of the temporal-only model highlights the effec- 
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tiveness of the Multimodal Block Transformer architecture, 

particularly its ability to capture complex temporal dependen-

cies through the Block Attention mechanism. 

 

<Table 1> Performance comparison with Multimodal Block Trans-

former and benchmarks 

 

4.3 Interpretation of Attention Score 

 

 

 

 
(Figure 4) Visualization of Sample Attention Weights 

 

(Figure 4) illustrates how the model attends to different as-

pects of each modality. The image attention weights identify 

the parts of the image that carry the most semantic importance. 

The Intra-Temporal Block Attention weights highlight that 

date-related information, such as day of the week, month and 

year, plays a more significant role compared to holiday fea-

tures, with the day of the week showing a clear weekly pattern. 

This pattern is also observed in the Inter-Temporal Attention 

weights, which not only emphasize the importance of recent 

historical data over older data but also reveal fluctuations that 

follow a weekly cycle. Additionally, the metadata attention 

weights indicate that the model focuses on key elements 

within each attribute, such as the genre “action”, the presence 

of a symbolic actor like “Robert Downey Jr.”, or a major pro-

duction studio like “Walt Disney”. Similarly, the natural lan-

guage attention weights demonstrate that the model attends to 

relevant language tokens associated with the movie’s content. 

This interpretability is especially valuable in scenarios 

where factors like product design are critical. For instance, in 

the case of a fashion product, the model can capture which 

specific design patterns of a shirt contribute to higher sales 

compared to others, providing insights into the product design 

that attract more customer interest. 

 

5. Conclusion 

This study introduced the Multimodal Block Transformer, 

a novel neural network architecture designed to effectively in-

tegrate multivariate time series data with multimodal data, 

such as images, natural language, and metadata, to enhance 

time series forecasting. This architecture not only demon-

strates improved forecasting performance but also provides 

valuable insights through the interpretability of attention 

weights. The fusion process in the proposed model leverages 

multimodal attention at each time step, offering a detailed un-

derstanding of how different aspects of multimodal data influ-

ence forecasting outcomes over time. In scenarios where fac-

tors like product design are critical, the different attention pat-

terns across time steps can provide deeper insights into the dy-

namics of the forecasting process, suggesting potential appli-

cations in other domains where multimodal data is essential 

for predictive modeling. 
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Models MSE 

Multimodal 

Block Transformer 

(proposed) 

Full modality 0.1193 

Temporal only 0.1259 

Temporal + Metadata 0.1239 

Temporal + Text 0.1247 

Temporal + Image 0.1273 

TFT - 0.3710 

GTM-Transformer - 0.4458 
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