과제정보
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 인공지능융합혁신인재양성사업(IITP-2023-RS-2023-00256629) 및 소프트웨어중심대학사업(2021-0-01409)의 연구결과로 수행되었음.
참고문헌
- X. Lin, C. Ding, J. Zeng, and D. Tao, "GPS-Net: Graph property sensing network for scene graph generation,"in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 3746-3753.
- D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, "Scene graph generation by iterative message passing," in Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2017, pp. 5410-5419.
- J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh, "Graph R-CNN for scene graph generation," in Proc. Eur. Conf. Comput. Vis., 2018, pp. 670-685.
- S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.
- N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, "End-to-end object detection with transformers," in Proc. Eur. Conf. Comput. Vis., 2020, pp. 213-229. 3
- G. Wang, Z. Li, Q. Chen, and Y. Liu, "OED: Towards One-stage End-to-End Dynamic Scene Graph Generation,"in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2024, pp. 27938-27947.
- J. Im, J. Nam, N. Park, H. Lee, and S. Park, "Egtr: Extracting graph from transformer for scene graph generation," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2024, pp. 24229-24238. 4, 5