Acknowledgement
이 논문은 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 지역지능화혁신인재양성사업임(IITP-2024-RS-2022-00156287, 50%). 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 인공지능융합혁신인재양성사업연구 결과로 수행되었음(IITP-2023-RS-2023-00256629, 50%)
References
- Sulo, Idil, et al. "Energy efficient smart buildings: LSTM neural networks for time series prediction." 2019 International conference on deep learning and machine learning in emerging applications(Deep-ML). IEEE, 2019.
- Wang, Xiwen, et al. "Distributed LSTM-GCN-Based Spatial-Temporal Indoor Temperature Prediction in Multizone Buildings." IEEE Transactions on Industrial Informatics 20.1 (2023): 482-491.
- Pipattanasomporn, Manisa, et al. "CU-BEMS, smart building electricity consumption and indoor environmental sensor datasets." Scientific Data 7.1 (2020): 241.
- Wang, Xin, et al. "LSTM-based short-term lo ad forecasting for building electricity consumption. " 2019 IEEE 28th international symposium on industrial electronics (ISIE). IEEE, 2019.
- Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "An empirical evaluation of generic convolution al and recurrent networks for sequence modeling." arXiv preprint arXiv:1803.01271 (2018).
- Lara-Benitez, Pedro, et al. "Temporal convolutional networks applied to energy-related time series forecasting." applied sciences 10.7 (2020): 2322.
- 진현석, and 김경백. "이상 전력 탐지를 위한 TCN-USAD." 스마트미디어저널 13.7 (2024): 9-17.
- Shi, Xingjian, et al. "Convolutional LSTM net work: A machine learning approach for precipitation nowcasting." Advances in neural information processing systems 28 (2015).