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Abstract 

We introduce a novel method to defend against model inversion attacks in Federated Learning (FL). FL enables the 

training of a global model by sharing local gradients without sharing clients' private data. However, model 

inversion attacks can reconstruct the data from the shared gradients. Traditional defense mechanisms, such as 

Differential Privacy (DP) and Homomorphic Encryption (HE), have limitations in balancing privacy and model 

accuracy. Our approach selectively encrypts more important gradients, which contain more information about the 

training data, to balance between privacy and computational efficiency. Additionally, optional DP noise is applied 

to unencrypted gradients for enhanced security. Comprehensive evaluations demonstrate that our method 

significantly improves both privacy and model accuracy compared to existing defenses. 

 

1. Introduction 

In this paper, we present a novel defensive mechanism designed to 

protect the training data used to train the global model in federated 

learning (FL) against model inversion attacks. FL has been 

increasingly popular over the past years due to its capability of 

training the global model by sharing local model updates (gradients) 

without revealing the clients’ private dataset which is considered 

valuable. However, model inversion attacks introduce a significant 

privacy threat by attempting to reconstruct the private dataset 

belonging to the client. The attack utilizes the gradients shared with 

the server to extract the privacy. To mitigate this, various defense 

mechanisms have been proposed such as differential privacy (DP) 

and homomorphic encryption (HE). While DP enhances the data 

privacy in FL setting, it comes with the cost of reduced model 

performance as the noise is added to the gradient. Recent efforts 

have focused on optimizing noise levels to balance privacy with 

model accuracy, though the increasing complexity of model 

architectures presents limitations for this strategy. 

Our proposed method overcome these challenges by leveraging HE 

to secure shared gradients and maintain the performance of the 

global model. Instead of applying HE to all gradients, which would 

be inefficient and overprotection, we selectively encrypt gradients 

with higher values. Such gradients carry more information about the 

private data. Moreover, we incorporate DP strategy to enhance the 

privacy by introducing noise to the unencrypted gradients. Through 

extensive evaluation compared to state-of-the-art (SOTA) defense 

mechanisms, our method demonstrates significant improvements in 

both accuracy and privacy. 

 

2. Background 

Homomorphic encryption (HE) [1]: a cryptographic technique that 

enables computations to be conducted directly on encrypted data, 

without requiring decryption. It ensures that sensitive information 

remains confidential throughout the computational process. HE is 

broadly classified into two categories based on the types of 

mathematical operations it supports on ciphertext: Partially 

Homomorphic Encryption (PHE) and Fully Homomorphic 

Encryption (FHE). PHE allows for only a single operation, either 

addition or multiplication, on the encrypted data. In contrast, FHE 

supports both addition and multiplication, facilitating arbitrary 

computations on encrypted information. This feature of HE makes it 

particularly useful in cloud-based applications, such as privacy-

preserving FL, where encrypted data can be aggregated by the 

server without revealing the underlying information. 

 

Differential Privacy (DP) [2]: Let ϵ be a positive real number and 0 

≤ δ < 1. A randomized function M gives (ϵ, δ)-differential 

privacy if for all datasets D1 and D2 differing on at most one 

element, and for all O ⊆ Range(M ), it satisfies Pr[M (D1) ∈ O] 

≤ exp (ϵ) × Pr[M (D2) ∈ O] + δ. 

In definition, we can easily know that ϵ is upper bound on the 

privacy loss corresponding to mechanism M. When δ is 0, the above 

definition is called (ϵ, 0)-DP and simply called ϵ-DP, it is very 

difficult to satisfy the above definition, and the definition is 

mitigated by adding δ, a number between 0 and 1. In ϵ-DP, the 

degree of privacy protection is determined by the value of the 

constant ϵ, and ϵ is called a privacy budget. In other words, if ϵ is 0, 

perfect privacy can be preserved, and as ϵ increases, privacy is lost. 

 

Model Inversion Attacks: Recent research has identified a new type 

of attack in federated learning (FL) that poses a threat to client 

privacy by reconstructing their private datasets. In FL, clients send 

their local updates (gradients) to the server, which aggregates them 

to train a global model. As the server has access to all shared 

gradients while clients await the global model, an honest-but-

curious server could potentially reconstruct private data samples 

through a process known as gradient matching. The effectiveness of 

the reconstructed data, such as images, is typically evaluated by 

comparing their similarity to the original samples. 
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Inverting Gradients (IG) [3] shows that previous attacks only 

considered the case of a single image in a batch. However, it is 

possible to reconstruct even with multiple images at high resolution 

for trained deep networks. They design a new loss function for 

gradient matching strategy and prove that the data to any fully 

connected layer can be reconstructed analytically. 

 

Privacy-preserving Federated Learning: 

To mitigate the privacy attacks such as model inversion attack, a 

sophisticated defense mechanism has been developed. This 

mechanism primarily involves adding noise to the gradients shared 

with the central server used to train the global model. The key 

challenge is to implement this defense without significantly 

compromising the accuracy of the global model. Additionally, it is 

crucial for this defense strategy to be practical, meaning it should 

not impose excessive computational overhead. Balancing between 

these requirements is vital for the effectiveness and feasibility of the 

defense mechanism. 

Soteria [4] emphasizes that privacy leakage in FL largely originates 

from the data representations embedded within the model updates. 

To mitigate this issue, the authors propose a perturbation-based 

defense mechanism that combines noise addition with gradient 

clipping in a single layer, aiming to minimize privacy leakage while 

preserving the global model's accuracy. Additionally, the paper 

offers an analysis of certified robustness and convergence 

guarantees. 

Outpost [5] introduces an innovative defense mechanism for FL, 

designed to address different levels of privacy risks throughout the 

FL process. This approach intelligently injects Gaussian noise into 

the gradients at each iteration, with the noise intensity dynamically 

adjusted according to the assessed privacy risk. The risk is 

determined by analyzing the dispersion of model weights in each 

layer using the Fisher information matrix. Additionally, to reduce 

computational overhead, Outpost incorporates a decay in the 

perturbation as the number of iterations increases. 

 

3. Methodology 

The process consists of mainly two phases and two steps in each 

phase. 

In the first phase, we selectively encrypt gradients based on their 

informational significance. We observe that larger gradients play a 

more crucial role in model updates, and therefore, encryption is 

applied to both shallow and deep layers where necessary. The 

optimal percentage of encrypted gradients is identified through 

iterative experimentation, aiming to balance between defense 

effectiveness and computational efficiency. This approach is driven 

by the understanding that gradients with larger magnitudes carry 

more information about the training data. Hence, we prioritized 

encryption for those gradients for the better privacy protection. 

In the second phase, we further enhance privacy by adding noise to 

the gradients that are not encrypted.  

In this phase, we aim to improve the overall privacy of FL 

framework by selecting an appropriate noise level represented by 

delta. Once again, the optimal value of delta is found through 

iterative experiments. This is important as the higher value of delta 

can offer better privacy protection, but the accuracy of the global 

model will decrease. We need to balance the tradeoff between 

privacy and accuracy. Although this phase is optional and is 

especially beneficial when minimizing computational overhead is 

priority, as in cases with fewer encrypted gradients. 

 

4. Experiments  

In this section, we evaluate the previously discussed methods, with 

a particular focus on its first phase. This phase concentrates on the 

selective application of homomorphic encryption (HE) to gradients, 

which are prioritized based on their magnitudes. The goal of this 

approach is to optimize the trade-off between privacy protection and 

computational efficiency within the encryption and federated 

learning process. 

We assume that the dataset is distributed evenly (IID) across all 

participating clients. Additionally, it is assumed that the server can 

receive gradients from the clients and accurately determine their 

origins. We use CIFAR10 dataset with 500 FL rounds with total of 

100 clients. We allow 20 rounds per client with 0.01 learning rate, 

0.9 momentum and 0.0005 weight decay. For Soteria, we configure 

the noise addition to affect 50% of the gradients in a fully connected 

layer. In Outpost, 80% of the gradients are pruned to zero, and noise 

is applied to 40% of the remaining gradients. For our method, we 

encrypt 10% of the largest gradients. The ResNet-50 architecture 

was employed to train the global model. 

 

We evaluate the effectiveness of our method against model 

inversion attacks by measuring the similarity of reconstructed 

images. By utilizing IG attack method, which is described in 

Background section, we compare the quality of the reconstructed 

image under various defense mechanisms. The result is shown in 

Figure 1. The result shows that the image reconstructed under our 

proposed defense method is blurrier and less similar to the original 

image compared to other defenses. This indicates our method is 

most effective in protecting the privacy. 

For quantitative analysis, we employ Mean Square Error (MSE) to 

measure pixel-wise differences and Peak Signal-to-Noise Ratio 

(PSNR), which calculates the ratio of maximum pixel fluctuation to 

the MSE between the original and reconstructed images. Our 

method demonstrates strong defense performance, reflected in 

higher MSE and lower PSNR values, as shown in Table 2. 

 

 

 
Figure 1. The visual result of reconstructed images using IG 

attack and the original image. 

 

 
Table 2. Comparison with state-of-the-art defense 

mechanisms. Higher MSE and lower PSNR is better 

 

5. Discussion 

While the results from our evaluation show that our method 

outperforms existing defense mechanisms such as Soteria and 

Outpost in terms of both privacy and accuracy, our experiments 

were conducted on a limited set of scenarios and models, notably 

using the ResNet-50 architecture. To ensure the generalizability and 

robustness of our approach, future work should expand the 

experiments to include a wider variety of model architectures, 

datasets, and real-world scenarios. Investigating how our method 

performs under different types of model inversion attacks, would 

provide additional insights into its broader applicability. 

Furthermore, additional research should explore optimizing the 

selection of gradients for encryption and the balance of DP noise to 

fine-tune performance. 
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6. Conclusion 

In this paper, we introduced a novel defense mechanism for 

federated learning designed to protect against model inversion 

attacks by selectively encrypting the most significant gradients. Our 

approach reduces the computational overhead associated with 

homomorphic encryption by focusing on gradients with the highest 

informational value and, optionally, adding DP noise to the 

unencrypted gradients to enhance privacy. Through evaluations, our 

method demonstrated superior performance compared to existing 

methods, offering a promising solution to the challenge of 

maintaining both privacy and model accuracy in FL.  
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