Acknowledgement
본 논문은 과학기술정보통신부의 재원으로 정보통신기획평가원(IITP)의 정보통신방송기술 국제공동연구(Project No. RS-2022-00165794, 50%), 국방ICT융합연구(Project No. 2022-11220701, 30%), 정보통신방송혁신인재양성사업(Project No. 2021-0-01816, 20%)의 지원을 받아 수행된 연구임.
References
- SOCRadar, Phishing in 2024, https://socradar.io/phishing-in-2024-4151-increase-since-chatgpt/
- Alsubaei, F. S., Almazroi, A. A., & Ayub, N. (2024). Enhancing phishing detection: A novel hybrid deep learning framework for cybercrime forensics. IEEE Access.
- Rangasamy, Gokul, et al. "Phishion: Phishing Detection Application." 2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE). IEEE, 2024.
- Aravena, Lucas Torrealba, et al. "More than Words is What you Need-Detecting DGA and Phishing Domains with Dom2Vec Word Embeddings." 2024 8th Network Traffic Measurement and Analysis Conference (TMA). IEEE, 2024.
- Roy, S. S., Naragam, K. V., & Nilizadeh, S. (2023). Generating phishing attacks using chatgpt. arXiv preprint arXiv:2305.05133.
- Colhak, Furkan, et al. "Phishing Website Detection through Multi-Model Analysis of HTML Content." arXiv preprint arXiv:2401.04820 (2024).
- Opara, C., Chen, Y., & Wei, B. (2024). Look before you leap: Detecting phishing web pages by exploiting raw URL and HTML characteristics. Expert Systems with Applications, 236, 121183.
- Wang, Mengli, et al. "Phishing webpage detection based on global and local visual similarity." Expert Systems with Applications 252 (2024): 124120.
- Pandey, P., & Mishra, N. (2023). Phish-Sight: a new approach for phishing detection using dominant colors on web pages and machine learning. International Journal of Information Security, 22(4), 881-891.
- Hazell, J. (2023). Spear phishing with large language models. arXiv preprint arXiv:2305.06972.
- Seo, Jae Woo, et al. "On-Device Smishing Classifier Resistant to Text Evasion Attack." IEEE Access (2024).
- Kim, Siyoon, et al. "Detection of Korean Phishing Messages Using Biased Discriminant Analysis under Extreme Class Imbalance Problem." Information 15.5 (2024): 265.
- Skula, I., & Kvet, M. (2024). A Framework for Preparing a Balanced and Comprehensive Phishing Dataset. IEEE Access.
- Vamsi, P., U. Muthaiah, and C. H. Roshan Vardhan. "Defending the Digital Frontier: URL-Based Phishing Detection Extension." International Conference on Computational Intelligence in Data Science. Cham: Springer Nature Switzerland, 2024.
- Jain, A. K., Debnath, N., & Jain, A. K. (2022). APuML: an efficient approach to detect mobile phishing webpages using machine learning. Wireless Personal Communications, 125(4), 3227-3248.
- Hao, Q., Diwan, N., Yuan, Y., Apruzzese, G., Conti, M., & Wang, G. (2024). It Doesn't Look Like Anything to Me: Using Diffusion Model to Subvert Visual Phishing Detectors. In 33rd USENIX Security Symposium (USENIX Security 24) (pp. 3027-3044).