참고문헌
- 조창섭. 사이버공격 탐지성능개선을 위한 머신 러닝기반 보안관제시스템. 숭실대학교 박사논문, 2019년 6월
- Sharafaldin, A. H. Lashkari, S. Hakak and A. A. Ghorbani, "Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy," 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India 2019, pp. 1-8, doi: 10.1109/CCST.2019.8888419.
- T. Subbulakshmi, K. BalaKrishnan, S. M. Shalinie, D. AnandKumar, V. GanapathiSubramanian and K. Kannathal, "Detection of DDoS attacks using Enhanced Support Vector Machines with real time generated dataset," 2011 Third International Conference on Advanced Computing, Chennai, India, 2011, pp. 17-22, doi: 10.1109/ICoAC.2011.6165212.
- M. Al-Eryani, E. Hossny and F. A. Omara, "Efficient Machine Learning Algorithms for DDoS Attack Detection," 2024 6th International Conference on Computing and Informatics (ICCI), New Cairo - Cairo, Egypt, 2024, pp. 174-181, doi: 10.1109/ICCI61671.2024.10485168.
- J. Buzzio-Garcia et al., "Exploring Traffic Patterns Through Network Programmability: Introducing SDNFlow, a Comprehensive OpenFlow-Based Statistics Dataset for Attack Detection," in IEEE Access, vol. 12, pp. 42163-42180, 2024, doi: 10.1109/ACCESS.2024.3378271.
- 서인혁, 이기택, 유진현, & 김승주. (2017). CNN 기반의 실시간 DNS DDoS 공격 탐지 시스템. 정보처리학회논문지. 컴퓨터 및 통신시스템, 6(3), 135-142