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ABSTRACT 

Electroencephalography (EEG) signals are often contaminated with artifacts, particularly those from eye 

movements, recorded as electrooculography (EOG). Effective denoising methods are essential for accurate EEG 

analysis. In this paper, we compare different denoising approaches, focusing on both convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs) for artifact removal. Through experiments, we found that CNNs 

excel in capturing spatial features, particularly in high-frequency EEG bands like Alpha and Beta, while RNNs are 

more effective at modeling temporal dependencies, particularly in lower-frequency bands like Delta and Theta. To 

leverage the strengths of both models, we propose a hybrid CNN-LSTM architecture. Our results show that the 

hybrid model achieves superior performance in denoising across all EEG frequency bands, with significant 

improvements in the Alpha and Beta bands. This approach provides a robust solution for denoising EEG signals 

contaminated with EOG artifacts, offering improved accuracy over standalone CNN or RNN models. 

 

1. Introduction & Related Work 

Electroencephalography (EEG) is a widely used tool for 

measuring brain activity, with applications ranging from 

clinical diagnostics to cognitive neuroscience. However, EEG 

signals are often contaminated with non-neural artifacts, such 

as those generated by eye movements, recorded as 

electrooculography (EOG). These artifacts can severely 

degrade the quality of EEG signals, leading to erroneous 

interpretations. Therefore, effective methods for removing 

these artifacts are crucial for reliable EEG analysis. 

Traditionally, linear techniques, such as Independent 

Component Analysis (ICA)[1,2] and regression-based 

filtering, have been employed to remove EOG contamination. 

While these methods are effective under certain conditions, 

they often fail to generalize to complex datasets or signals with 

high noise levels. Additionally, these methods may struggle to 

capture the intricate spatial and temporal dependencies present 

in EEG signals. 

To address these limitations, machine learning and deep 

learning approaches have shown significant promise in 

biological signals [3,4,5,6], especially EEG denoising tasks. 

Among these, Convolutional Neural Networks (CNNs) have 

been particularly effective at capturing spatial features from 

EEG signals, especially in high-frequency bands such as 

Alpha and Beta. CNNs can automatically learn spatial 

representations from the data, making them highly adaptable 

to different noise levels and patterns. However, CNNs are 

limited in their ability to capture the temporal dependencies 

crucial for low-frequency bands, such as Delta and Theta. On 

the other hand, Recurrent Neural Networks (RNNs), 

particularly Long Short-Term Memory (LSTM) networks, 

have demonstrated effectiveness in modeling time-series data. 

LSTMs can capture long-term temporal dependencies in EEG 

signals, which is critical for denoising signals in the Delta and 

Theta bands. Despite their strengths, LSTMs are less effective 

in capturing spatial features, which limits their overall 

performance in EEG denoising tasks. 

To overcome the individual limitations of CNNs and 

LSTMs, recent work has focused on hybrid models that 

combine the strengths of both architectures. By integrating 

CNN layers for spatial feature extraction with LSTM layers 

for temporal feature learning, hybrid CNN-LSTM models 

offer a more comprehensive solution for EEG denoising. 

These models have been shown to perform well across various 

time-series prediction and classification tasks, making them 

promising candidates for denoising EEG signals contaminated 

by EOG artifacts. 

In our study, we utilized the EEGdenoiseNet[7] dataset, a 

benchmark dataset designed specifically for EEG denoising 

research. The EEGdenoiseNet[7] dataset contains both clean 

and contaminated EEG signals, including artifacts like EOG 

and EMG, making it an ideal dataset for evaluating different 

denoising techniques. Specifically, the dataset consists of 

4514 pure EEG segments and 3400 pure EOG segments, 

which are combined to create semi-synthetic contaminated 

signals for testing various denoising algorithms. This dataset 

has been widely used to train and test deep learning models 

aimed at improving artifact removal in EEG. Leveraging this 

dataset, we implemented and evaluated several deep learning 

models, including CNN, LSTM, and a hybrid CNN-LSTM 

architecture, to compare their effectiveness in denoising EEG 

signals across various frequency bands. 

Our results demonstrate that the hybrid CNN-LSTM model 

outperforms the standalone CNN and LSTM models, 

particularly in the Alpha and Beta bands, which are crucial for 

cognitive and motor processing. This makes the hybrid model 

a robust solution for EEG denoising, especially in scenarios 

where both spatial and temporal dependencies are critical. 
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2. Proposed Method 

2.1. Mixing Methods with SNR Adjustment  

To evaluate the performance of various denoising models, 

we generated contaminated EEG signals by mixing clean EEG 

with EOG artifacts using two distinct approaches: 

EOG+Linear and EOG+Adaptive. These methods simulate 

real-world EEG signals that are affected by eye movements 

and other non-neural artifacts, making them ideal for testing 

the robustness of denoising algorithms. We also adjusted the 

contamination levels using various Signal-to-Noise Ratios 

(SNR) to reflect different levels of interference in the signals. 

According to previous studies, the SNR of EEG 

contaminated by ocular artifacts typically ranges from −7 dB 

to 2 dB . For EEG contaminated by myogenic artifacts, the 

SNR is reported to be between −7 dB and 2 dB[8]. These 

ranges informed our choice of SNR levels during the 

contamination simulation to ensure a realistic range of noise 

levels was applied. 

2.2. EOG+Linear Mixing Method with SNR 

      The EOG+Linear method simulates contamination by 

linearly combining clean EEG signals with EOG signals. The 

contamination level is controlled by scaling the signals based 

on the desired SNR. The mixing formula is given as: 

𝒚𝒍𝒊𝒏𝒆𝒂𝒓 (𝒕) = 𝒙𝒆𝒆𝒈(𝒕) + 𝝀 ∗ 𝒙𝒆𝒐𝒈(𝒕)    (1) 

where: 

 𝑦𝑙𝑖𝑛𝑒𝑎𝑟  (𝑡) is the contaminated EEG signal, 

 𝑥𝑒𝑒𝑔 is the clean EEG signal, 

 𝑥𝑒𝑜𝑔 is the EOG artifact 

 𝜆 scaling factors used to control the contribution of 

the EEG and EOG signals, respectively. 

By adjusting 𝜆, we were able to simulate various levels of 

SNR, ranging from low (high contamination) to high (low 

contamination). This approach provided a range of 

contamination scenarios to test the denoising models under 

different noise conditions. 

 
Fig. 1. Example of contaminated signal using Linear 

Mixing method 

 

2.3. EOG+Adaptive Mixing Method with SNR 

      The EOG+Adaptive method goes beyond the static nature 

of linear mixing by dynamically adjusting the contamination 

level based on the characteristics of the EEG and EOG signals. 

This method mimics more realistic scenarios where the level 

of contamination changes over time, such as during sudden 

eye movements or varying noise conditions. The adaptive 

mixing formula is:  

𝒚𝒍𝒊𝒏𝒆𝒂𝒓 (𝒕) = 𝜶 ∗ 𝒙𝒆𝒆𝒈(𝒕) + 𝝀 ∗ 𝒙𝒆𝒐𝒈(𝒕)  (2) 

 

where: 

 𝑦𝑙𝑖𝑛𝑒𝑎𝑟  (𝑡) is the contaminated EEG signal, 

 𝑥𝑒𝑒𝑔 is the clean EEG signal, 

 𝑥𝑒𝑜𝑔 is the EOG artifact 

 𝛼  and 𝛽  are scaling factors used to control the 

contribution of the EEG and EOG signals, 

respectively. 

where α and λ are time-varying scaling functions that 

adjust dynamically based on the signal properties. In this 

method, the contamination level changes over time to 

reflect different SNR conditions, providing a more realistic 

test for the denoising models. 

 
  

Fig. 2. Example of contaminated signal using Adaptive 

Mixing method 

 

 

2.4. Dataset Generation 

For both the linear and adaptive methods, we used the 

EEGdenoiseNet[7] dataset, which contains clean EEG signals 

and corresponding EOG artifacts. Each clean EEG signal was 

mixed with EOG artifacts at multiple SNR levels, simulating 

different contamination intensities. EEG segments and ocular 

artifact segments according to section 2.1, with SNR raging 

from ten different SNR levels (−7, −6, −5, −4, −3, −2, −1, 0, 

1, 2 dB). 

 
Fig. 2. The semi-synthetic data generated by mixing a pure EEG 

segment and an EOG 
 

By utilizing both static (linear) and dynamic (adaptive) 

mixing methods, and adjusting the contamination levels 

through SNR, we ensured that the models were rigorously 
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tested across a broad spectrum of real-world scenarios. This 

allowed us to comprehensively evaluate the strengths and 

weaknesses of each denoising approach. 

 

3. Experiment and Result Analysis 

In this study, we compared several denoising models, 

including Simple CNN, Complex CNN, RNN (LSTM), and 

FCNN, to evaluate their performance in denoising EEG 

signals contaminated with EOG artifacts. The experiments 

were conducted using two contamination methods: 

EOG+Linear and EOG+Adaptive. The models were 

evaluated across five EEG frequency bands: Delta, Theta, 

Alpha, Beta, and Gamma. 

 

3.1 EOG+Adaptive Denoising Results 

The following table summarizes the results for different 

models when tested on EEG signals contaminated using the 

EOG+Adaptive mixing method: 

 

Table1. Power ratios of different frequency bands before and after 

ocular artifact removal 

 

3.1.1 EOG+Linear Denoising Results 

 

Table2. Power ratios of different frequency bands before and 

after ocular artifact removal 

 

3.2 Model Comparison Based on Result 

 

 From these experiments, we observed that: 

 CNN-based models performed better in the higher-

frequency bands (Alpha, Beta), as they are effective 

at capturing spatial features. 

 RNN-based models (LSTM) performed well in the 

lower-frequency bands (Delta, Theta), excelling in 

capturing temporal dependencies. 

 FCNN models exhibited strong performance in some 

bands but were generally outperformed by CNN and 

RNN models. 

3.3 Development of the CNN-LSTM Hybrid Model 

 Based on these observations, it became clear that 

CNN and RNN models have complementary strengths. While 

CNNs are excellent for extracting spatial features, RNNs 

(LSTM) are better suited for capturing temporal dependencies. 

To leverage the strengths of both models, we developed a 

hybrid CNN-LSTM model. This model combines: 

 CNN layers for spatial feature extraction. 

 LSTM layers for temporal dependency modeling. 

The hybrid CNN-LSTM model was then evaluated using 

the same metrics across the same EEG frequency bands, and 

the results showed that the CNN-LSTM hybrid model 

outperformed both standalone CNN and RNN models in most 

bands. 

The following table summarizes the power ratio results of the 

CNN-LSTM hybrid model: 
Frequency Band Ground Truth 

Power Ratio 

Denoised EEG 

Power Ratio (CNN-

LSTM) 

Delta 0.266 0.25079 

Theta 0.138 0.11724 

Alpha 0.302 0.35955 

Beta 0.170 0.15302 

Gamma 0.077 0.03279 

Table3. Power ratios of different frequency bands before and 

after ocular artifact removal 

 

3.4 Delta Metric Calculation 

 

     To quantitatively assess model performance, we introduced 

the Delta metric[9], which calculates the total absolute 

difference between the predicted values and the ground truth 

across all EEG frequency bands. The formula for calculating 

the Delta value is: 

∆𝒋= ∑ |𝑷𝒊 − 𝑮𝒊|
𝒏
𝒊=𝟏     (3) 

Where: 

 𝑃𝑖 represents the predicted value for each EEG 

frequency band (Delta, Theta, Alpha, Beta, Gamma). 

 𝐺𝑖 represents the ground truth value for each 

frequency band. 

 The sum is taken across all frequency bands to 

calculate the total difference (∆𝑗) for each model. 

A lower Delta value indicates that the model’s predictions 

are closer to the ground truth across all bands, while a higher 

value suggests greater deviation from the ground truth. 

The following table summarizes the Delta values for each 

model: 

Model Delta Value 

RNN (LSTM) 0.1883 

Complex CNN 0.2577 

Simple CNN 0.3100 

CNN-LSTM Hybrid (ours) 0.1556 

 

 

4. Conclusion 

In this study, we investigated the performance of various 

deep learning models for denoising EEG signals 

contaminated with EOG artifacts. We explored two different 

contamination methods, EOG+Linear and EOG+Adaptive, 

to simulate real-world scenarios of EEG signal degradation. 

Through our experiments, we evaluated the effectiveness of 

several models, including Simple CNN, Complex CNN, 

RNN (LSTM), FCNN, and a hybrid CNN-LSTM model, 

Denoising 

method 

Delta Theta Alpha Beta Gamma 

FCNN 0.174 0.090 0.588 0.076 0.028 

Simple CNN 0.277 0.064 0.390 0.100 0.035 

Complex CNN 0.189 0.096 0.393 0.211 0.070 

RNN(LSTM) 0.213 0.170 0.345 0.196 0.041 

Ground 

Truth(EEG) 

0.266 0.138 0.302 0.170 0.077 

Contaminated 

Signal 

0.415 0.09 0.125 0.068 0.0306 

Denoising 

method 

Delta Theta Alpha Beta Gamma 

FCNN 0.196 0.094 0.550 0.079 0.031 

Simple CNN 0.233 0.069 0.456 0.105 0.038 

Complex CNN 0.201 0.104 0.384 0.193 0.073 

Ground 

Truth(EEG) 

0.266 0.138 0.302 0.170 0.077 

Contaminated 

Signal 

0.372 0.107 0.147 0.092 0.047 
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across five EEG frequency bands: Delta, Theta, Alpha, 

Beta, and Gamma. 

Our results demonstrated that CNN models performed well 

in the higher-frequency bands, such as Alpha and Beta, due 

to their ability to capture spatial features. On the other hand, 

RNN (LSTM) models showed superior performance in the 

lower-frequency bands, such as Delta and Theta, where 

modeling temporal dependencies is crucial. However, neither 

CNN nor RNN models were able to perform consistently 

well across all frequency bands. 

To address this limitation, we developed a hybrid CNN-

LSTM model, which combines the strengths of both CNN 

and RNN. The CNN layers were used to capture spatial 

features, while the LSTM layers were employed to model 

temporal dependencies. This hybrid model achieved the best 

overall performance, with the lowest Delta value of 0.1455, 

indicating that it was the most accurate in reconstructing 

clean EEG signals across all frequency bands. 

Additionally, the power ratio results further confirmed the 

model’s effectiveness, particularly in the Alpha and Beta 

bands, which are critical for cognitive and motor processes. 

The CNN-LSTM hybrid model outperformed standalone 

CNN and RNN models in nearly every scenario, proving to 

be a robust solution for denoising EEG signals contaminated 

with EOG artifacts. 

In conclusion, the hybrid CNN-LSTM model provides a 

powerful and balanced approach to EEG denoising by 

leveraging both spatial and temporal feature extraction. This 

study highlights the importance of combining different 

architectures to address the challenges of EEG signal 

processing and opens the door for further research into hybrid 

models for improving signal quality in real-world EEG 

applications. 
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