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Abstract 

Parkinson’s disease (PD) is a progressive disorder. In this study, we proposed a deep learning model that 

utilized participants’ baseline clinical features and deformation-based morphometry (DBM) to predict long-term 

cognitive trajectory over four years. A total of 216 participants from the PPMI (Parkinson’s Progression Markers 

Initiative) dataset were included, with 157 being PD patients and 59 healthy controls. We identified brain 

connectivity patterns associated with long-term cognitive decline using DBM and independent component analysis 

(ICA) techniques. Results of the cognitive prediction indicated that using only clinical features, DBM features, and 

multimodal features yielded average accuracies of 76 ± 4%, 70 ± 6%, and 78 ± 2%, and average AUC (Area 

Under the Curve) of 0.71 ± 0.06, 0.62 ± 0.04, and 0.76 ± 0.06, respectively. Our study demonstrated that the 

potential of using DBM features to better predict disease progression. 
 
1. Introduction 

Parkinson’s disease ranks as the second most prevalent 
neurodegenerative disorder. PD symptoms primarily include 
motor dysfunctions such as bradykinesia, tremor, and 
postural instability, often accompanied by non-motor 
symptoms such as sleep disturbances, depression, olfactory 
deficits, and memory impairment. Currently, there is no cure 
for PD, and clinical treatments, including levodopa, 
dopamine agonists, or deep brain stimulation, only alleviate 
symptoms. Therefore, predicting the progression of PD is 
crucial for personalized patient care. 

The MoCA score is extensively utilized to assess 
cognitive impairment (CI) in PD patients, as it encompasses 
a range of common non-motor symptoms. The MoCA has a 
total score of 30, with a cutoff value of 26. Patients scoring 
below 26 are considered to have varying degrees of cognitive 
impairment [1]. Research indicated that the risk of dementia 
in PD patients increased after four years. Therefore, this 
study aimed to predict long term cognition (based on MoCA 
scores) in patients four years later using their baseline 
characteristics. In this study, we propose a method that uses 
clinical features and DBM to predict the four-year cognitive 
trajectories of Parkinson’s patients and healthy controls. The 
contributions of this study are as follows: 

1) We defined a trajectory model based on participants’ 
long-term MoCA scores, which allowed for 
trajectory estimation even in the presence of missing 
data for any given year. 

2) We used DBM and ICA to identify brain 
connectivity patterns associated with long-term 
cognitive decline, and employed multimodal 
methods to predict disease progression. 

2. Related work 

MRI and SPECT are the most common neuroimaging 
techniques used in Parkinson’s disease. Researchers often 

use deep learning networks to process MRI images; however, 
deep learning is better suited for complex predictive tasks 
and its “black box” nature and high computational demands 
may make it less effective than DBM for morphological 
analysis and interpretation. DBM can identify overlapping 
regions of atrophy and intrinsic connectivity networks. 
Therefore, we used DBM and tensor-based probabilistic ICA 
to identify brain atrophy and predict PD progression. 

In recent years, many researchers have analyzed the 
relationship between DBM and various symptoms of PD, but 
few have used DBM to predict PD progression. For example, 
Rosinvil et al. [2] employed DBM to examine 
neuroanatomical substrates and found that excessive daytime 
sleepiness correlated with higher doses of dopamine receptor 
agonists, more severe motor symptoms, and specific 
neuroanatomical changes such as increased surface area in 
the right insula and contracted surfaces in the right putamen 
and amygdala. Wang et al. [3] employed DBM and 
hierarchical clustering to identify two neuroanatomic 
biotypes in newly diagnosed PD, revealing distinct 
differences in subcortical brain volumes and clinical severity. 
They found that patients with smaller subcortical volumes 
had more severe motor impairments and a faster decline in 
clinical symptoms and dopamine functional imaging over 
five years. Pieperhoff et al. [4] used DBM to analyze 
longitudinal MRI and tracked regional brain atrophy over up 
to 8.8 years. It indicated that PD patients exhibited 
accelerated volume loss primarily in the occipital and 
temporal lobes, as well as in the insula and putamen, which 
correlated with worsening clinical symptoms. Such studies 
have not further leveraged the advantages of DBM to predict 
disease progression.  

3. Proposed method 

We proposed a multimodal approach to predict 
participants’ long-term cognitive trajectories. First, the DBM  
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module processed the raw 3D MRI images to obtain DBM 
images, which were then subjected to independent 
component analysis. Pearson correlation coefficients were 
used to select the independent components. These selected 
components, along with clinical features, were fed into the 
MLP networks to predict the subtype of cognitive trajectory 
over the four-year period, as shown in Fig. 1. 

A. Deformation-Based Morphometry 

We used DBM to assess local changes in tissue density 
by non-linearly transforming MRI images to a stereotaxic 
template and measuring tissue deformation. DBM was 
preferred over Voxel-Based Morphometry (VBM) because 
VBM does not preserve the entirety of MRI data and may be 
less sensitive to subcortical atrophy. For DBM, we registered 
each brain non-linearly to the MNI152-2009c template, pre-
processing the MRI images with denoising, intensity 
correction, and linear intensity scaling, as described in [6]. 
We then computed voxel displacements to create a map 
showing how each voxel was adjusted to fit the template. To 
estimate local atrophy, we calculated the determinant of the 
local Jacobian matrix of displacement. 

B. Independent Component Analysis and Component 
Selection 

To ensure comparability between groups, we 
concatenated all participants’ DBM maps obtained in the 
previous step into a 4D image for ICA. ICA is a method that 
decomposes data into independent components without prior 
knowledge [7]. We used the GIFT toolbox in MATLAB to 
perform ICA with the number of components set to 30 and 
the Infomax algorithm. Given ICA’s inherent randomness, 
we ran the Infomax algorithm 10 times using ICASSO to 
assess its stability and reliability. Finally, the independent 
component maps were converted to Z-statistical images with 
a threshold of Z > 3. 

ICA also produced a spatial component matrix with the 
size of 𝑃𝑃×𝐶𝐶, where 𝑃𝑃 was the number of participants and C 
was the number of independent components. This matrix 
represents the intensity or activation level of each 
independent component for each participant. Due to noise 
and instability in the ICA process, as well as the presence of 
components with no significant association with clinical data, 
we computed the Pearson correlation coefficient between 

each ICA component and participants’ labels, and assessed 
significance using t-test p-values. The independent 
components significantly associated with the labels were 
ultimately identified. 

4. Results and Discussion 

A. Dataset, participants and labelling result 

We aimed for the labels to reflect participants’ long-term 
cognitive types. To achieve this, we employed the method 
proposed by Bhagwat et al. [5], classifying participants’ 
long-term cognitive trajectories based on MoCA scores from 
baseline to the fourth year. Euclidean distance was used as 
the similarity measure between longitudinal MoCA scores, 
and clustering was performed using the Ward method. 
Trajectories were created under the condition of having at 
least three years of follow-up data; thus, participants with 
two years or fewer of follow-up were excluded from the 
study. 

We obtained 157 PD patients and 59 healthy controls 
from the PPMI dataset. PPMI was launched in 2010 to 
identify biomarkers for Parkinson’s disease progression. The 
participants in our study were enrolled between July 2010 
and May 2023. Finally, out of 216 participants, we classified 
149 as cognitively stable and 67 as exhibiting cognitive 
decline over four years. Fig. 2 illustrates the cognitive trends 
for these two trajectories, as determined by 5-fold cross-
validation. We found that Trajectory 1 had higher MoCA 
scores at baseline, with scores remaining relatively stable 
over the four-year period. In contrast, Trajectory 2 exhibited 
markedly different results, with baseline MoCA scores 
around 26 and a significant decline in the first year. 

 
Fig. 2 Trends in MoCA scores for the two trajectories over four 
years. 
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Fig. 1 Proposed multimodal model for predicting long-term cognitive decline in Parkinson’s disease. 
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B. Clinical features selection 

As described in existing researches [8], [9], the predictors 
in Table I are strongly associated with the MoCA scores. 
Therefore, those predictors were included as the inputs of the 
clinical module. 

Table I Selected baseline clinical features for long-term cognitive 
prediction. 

Clinical Features 
HC (n=59)  PD (n=157) 

Mean (SD)  Mean (SD) 
Demographic      
Age 61.1 (10.1)  61.6 (9.3) 
Sex (male/female) 38/21   103/54  
Education (years) 15.6 (2.8)  15.5 (2.8) 
Clinical characteristics      
MoCA 28.2 (1.1)  27.5 (2.0) 
UPSIT 33.2 (4.8)  22.3 (8.8) 
STAI 56.9 (14.1)  65.9 (18.3) 
HVLT Discrimination  9.7 (3.2)  9.7 (2.6) 
LNS 11.1 (2.3)  10.8 (2.8) 
QUIP 0.5 (1.0)  0.3 (0.6) 
SCOPA 6.1 (3.7)  9.4 (6.4) 
GDS 1.5 (2.9)  2.5 (2.6) 
SD, Standard Deviation; STAI, State-Trait Anxiety Inventory; 
HVLT Discrimination, Hopkins Verbal Learning Test 
Discrimination Index; LNS, Letter-Number Sequencing; QUIP, 
Questionnaire for Impulsive-Compulsive Disorders in 
Parkinson’s Disease; SCOPA, Scales for Outcomes in 
Parkinson’s Disease; GDS, Geriatric Depression Scale. 

C. Pearson correlation and spatial maps of independent 
components 

Table II lists the p-values for all 30 independent 
components obtained from Pearson correlation analysis. 
Participants with long-term decline cognitive showed 
significantly decreased integrity in IC7 (0.0005), IC9 (0.007) 
and IC15 (0.049) compared to participants with long-term 
stable cognitive.  

Table II p-values from the t-test based on Pearson correlation 
coefficients. 

IC1 IC2 IC3 IC4 IC5 IC6 
0.36 0.94 0.52 0.47 0.59 0.92 
IC7 IC8 IC9 IC10 IC11 IC12 

0.0005 0.80 0.007 0.29 0.23 0.27 
IC13 IC14 IC15 IC16 IC17 IC18 
0.88 0.23 0.049 0.32 0.32 0.34 
IC19 IC20 IC21 IC22 IC23 IC24 
0.49 0.97 0.66 0.47 0.92 0.72 
IC25 IC26 IC27 IC28 IC29 IC30 
0.13 0.45 0.58 0.79 0.33 0.22 

We mapped these three independent components to the 
atlase of [10] (Fig. 3): IC7 prominently features the caudate 
nucleus, thalamus, and midbrain, highlighting its role in 
motor and sensory processing networks; IC9 shows strong 
associations with motor functions, evident in the cerebellum, 
and visual processing, indicated by the occipital lobe; IC15 
focuses on cognitive, sensorimotor, and emotional processing. 

The prefrontal cortex’s activation is linked to complex 
cognitive functions, while the involvement of sensorimotor 
and midline structures reflects integration of sensory inputs, 
motor coordination, and emotional regulation. 

 
Fig. 3 Spatial maps of independent components. Left: IC7 at voxel 
97, 116, 101; Middle: IC9 at voxel 63, 135, 44; Right: IC15 at voxel 
97, 43, 75. IC, Independent Component. 

D. Model performance 

The data was divided into two parts, with 85% used for 5-
fold cross-validation to select the best model based on the 
highest F1 score, and the remaining 15% used for testing. In 
addition to the model shown in Fig. 1, we developed the 
other two models to compare the testing results with those of 
the multimodal model: using only 11 clinical features and 
using only DBM features. Unlike the multimodal model, 
these models excluded the concatenation and two fully 
connected layers in the fusion module but retained the 
dropout, the final fully connected layer, and the sigmoid 
function. 

Table III compares the prediction results of two models 
after 5-fold cross-validation. When using only clinical data 
and DBM images, the testing accuracy was suboptimal. The 
multimodal model achieved the highest mean accuracy (78 ± 
2%) and F1-score (0.56 ± 0.04) with the lowest standard 
deviation, indicating the best robustness in 5-fold cross 
validation. The performance of models using only clinical 
features was slightly inferior to those using all modalities, 
highlighting the significance of clinical features in predictive 
tasks. 

Table III Mean testing accuracy, AUC and F1-score. 

Model Accuracy (%) AUC F1-score 
Clinical only 76 ± 4 0.71 ± 0.06 0.50 ± 0.09 
DBM only 70 ± 6 0.62 ± 0.04 0.40 ± 0.15 
Multimodal 78 ± 2 0.76 ± 0.06 0.56 ± 0.04 

 

Fig. 4 visualizes the performance of multimodal model in 
predicting long-term cognition, with the AUC representing 
the measure of the model’s ability to distinguish between two 
classes. Consistent with the results in Table III, incorporating 
clinical features or DBM features increased the AUC values. 
With an AUC of 0.62, the DBM model had the lowest 
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performance among the three models. It indicated that while 
DBM features provided valuable information, it might not be 
sufficient on its own for accurate predictions. The 
multimodal model achieved an AUC of 0.76 on the ROC 
curve. At the selected threshold, the model demonstrated a 
specificity of 88%, a recall of 51%, and a precision of 64%. 

 
Fig. 4 Mean ROC curve of the multimodal model. 

5. Conclusion 

In this study, we proposed a deep learning model that 
leverages baseline clinical and DBM features to predict the 
long-term cognitive trajectory of PD over four years. Using 
DBM and independent component analysis (ICA) techniques, 
we identified brain connectivity patterns associated with 
long-term cognitive decline. Our cognitive prediction results 
showed that the average accuracies for using clinical features 
only, DBM features only, and multimodal features were 76 ± 
4%, 70 ± 6%, and 78 ± 2%, respectively. The average AUC 
values were 0.71 ± 0.06, 0.62 ± 0.04, and 0.76 ± 0.06, 
respectively. These findings demonstrated that DBM features 
offer significant potential for improving disease progression 
prediction, highlighting the added value of integrating DBM 
with clinical features to enhance predictive accuracy. 

However, there are some limitations to this study. After 
removing participants who could not be labeled, lacked 
clinical data, or did not have MRI images, only 216 
participants met the criteria. This led to an imbalance 
between the two subtypes, which indirectly resulted in lower 
F1 scores. Additionally, while we validated the feasibility of 
the trajectory method and multimodal prediction, the 
accuracy remained insufficient. Future work could explore 
incorporating additional clinical data to define trajectories 
and further refine machine learning methods to improve the 
applicability of DBM-based MRI processing techniques. 

 
Acknowledgment 

This work was supported by the National Research 
Foundation of Korea (NRF) grant funded by the Korea 
government (MSIT) (RS-2023-00208397) and was supported 
by Institute of Information & communications Technology 
Planning & Evaluation (IITP) under the Artificial 
Intelligence Convergence Innovation Human Resources 
Development (IITP-2023-RS-2023-00256629) grant funded 

by the Korea government (MSIT). This research was also 
supported by the MSIT(Ministry of Science and ICT), Korea, 
under the ITRC(Information Technology Research Center) 
support program(IITP-2024-RS-2024-00437718) supervised 
by the IITP (Institute for Information & Communications 
Technology Planning & Evaluation). 

 
References 

[1] Z. S. Nasreddine et al., “The Montreal Cognitive 
Assessment, MoCA: A Brief Screening Tool For Mild 
Cognitive Impairment,” J American Geriatrics Society, 
vol. 53, no. 4, pp. 695–699, Apr. 2005, doi: 
10.1111/j.1532-5415.2005.53221.x. 

[2] T. Rosinvil et al., “Clinical symptoms and 
neuroanatomical substrates of daytime sleepiness in 
Parkinson’s disease,” npj Parkinson’s Disease, vol. 10, 
no. 1, 2024, doi: 10.1038/s41531-024-00734-x. 

[3] L. Wang et al., “Association of specific biotypes in 
patients with Parkinson disease and disease 
progression,” Neurology, vol. 95, no. 11, pp. E1445–
E1460, 2020, doi: 10.1212/WNL.0000000000010498. 

[4] P. Pieperhoff et al., “Regional changes of brain structure 
during progression of idiopathic Parkinson’s disease – A 
longitudinal study using deformation based 
morphometry,” Cortex, vol. 151, pp. 188–210, 2022, 
doi: 10.1016/j.cortex.2022.03.009. 

[5] N. Bhagwat, J. D. Viviano, A. N. Voineskos, M. M. 
Chakravarty, and Alzheimer’s Disease Neuroimaging 
Initiative, “Modeling and prediction of clinical symptom 
trajectories in Alzheimer’s disease using longitudinal 
data,” Plos Comput. Biol., vol. 14, no. 9, p. e1006376, 
Sep. 2018, doi: 10.1371/journal.pcbi.1006376. 

[6] Y. Zeighami et al., “Network structure of brain atrophy 
in de novo parkinson’s disease,” eLife, vol. 4, no. 
September 2015, 2015, doi: 10.7554/eLife.08440. 

[7] C. F. Beckmann and S. M. Smith, “Probabilistic 
Independent Component Analysis for Functional 
Magnetic Resonance Imaging,” IEEE Trans. Med. 
Imaging, vol. 23, no. 2, pp. 137–152, Feb. 2004, doi: 
10.1109/TMI.2003.822821. 

[8] J. C. Dalrymple-Alford et al., “The MoCA: Well-suited 
screen for cognitive impairment in Parkinson disease,” 
Neurology, vol. 75, no. 19, pp. 1717–1725, Nov. 2010, 
doi: 10.1212/WNL.0b013e3181fc29c9. 

[9] A. A. Nguyen, P. D. Maia, X. Gao, P. F. Damasceno, and 
A. Raj, “Dynamical Role of Pivotal Brain Regions in 
Parkinson Symptomatology Uncovered with Deep 
Learning,” Brain Sciences, vol. 10, no. 2, p. 73, Jan. 
2020, doi: 10.3390/brainsci10020073. 

[10] J. K. Mai, M. Majtanik, and G. Paxinos, Atlas of the 
Human Brain. Academic Press, 2015. 

 

- 568 -




