Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 인공지능융합혁신인재양성사업 (IITP-2023-RS-2023-00256629) 및 대학ICT연구센터사업(IITP-2024-RS-2024-00437718)의 연구결과로 수행되었음.
References
- Ronneberger, et al. "U-net: Convolutional networks for biomedical image segmentation." MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer International Publishing, 2015.
- Chen, Liang-Chieh. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587 (2017).
- Cheng, Bowen, et al. "Boundary IoU: Improving object-centric image segmentation evaluation." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.
- Martin, et al. "Learning to detect natural image boundaries using local brightness, color, and texture cues." IEEE transactions on pattern analysis and machine intelligence 26.5 (2004): 530-549.
- Cho, Yeong-Jun. "Weighted intersection over union (wIoU): a new evaluation metric for image segmentation." arXiv preprint arXiv:2107.09858 (2021). 2107