과제정보
본 논문은 과학기술정보통신부 및 정보통신기획평가원의 인공지능융합혁신인재양성사업 연구 결과로 수행되었으며(IITP-2023-RS-2023-00256629), 농림축산식품부의 재원으로 농림식품기술기획평가원의 농식품과학기술융합형연구인력양성사업의 지원을 받아 연구되었음(RS-2024-00397026).
참고문헌
- Kerbl, B., Kopanas, G., Leimkuhler, T., & Drettakis, G. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions on Graphics, 42(4), 2023.
- Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. European Conference on Computer Vision (ECCV), Virtual, 2020, pp. 405-421.
- Szymanowicz, S., Rupprecht, C., & Vedaldi, A. Splatter Image: Ultra-Fast Single-View 3D Reconstruction. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 2024.
- Charatan, David, et al. "pixelsplat: 3d gaussian splats from image pairs for scalable generalizable 3d reconstruction." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.2023.
- Chen, Yuedong, et al. "Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images." arXiv preprint arXiv:2403.14627 (2024).