
ACK 2024 학술발표대회 논문집 (31권 2호)

솔라나 스마트 계약의 취약점 연구

바게리 마흐부베 1, 박성환 2, 권동현 3*
1부산대학교 정보컴퓨터공학과 학부생
2부산대학교 정보융합공학과 박사과정

3부산대학교 정보컴퓨터공학과 교수

mahyool@pusan.ac.kr, starjara@pusan.ac.kr, kwondh@pusan.ac.kr

Study of Vulnerabilities in Solana Smart Contracts

Mahboubeh Bagheri1, Seong-Hwan Park2, Dong-Hyeon Kwon3*
1Dept. of Computer Science and Engineering, Pusan National University

2Dept. of Information Convergence Engineering, Pusan National University
3Dept. of Computer Science and Engineering, Pusan National University

Abstract

Solana, a high-performance blockchain platform, is known for its fast transaction speeds and low operational

costs, making it a popular choice for decentralized applications. However, its architecture introduces unique

security vulnerabilities in smart contracts. This paper presents an analysis of six key vulnerabilities in Solana smart

contracts—missing ownership checks, missing signer checks, arithmetic overflow/underflow, cross-program

invocation (CPI) vulnerabilities, account confusion, and missing key checks. We further evaluate how automated

verification tools like VRust and fuzzing techniques detect these vulnerabilities. Through case studies of widely-

used Solana programs like Mango Markets and the Solana Program Library (SPL), we illustrate the effectiveness

of these tools in real-world scenarios.

1. Introduction

Solana has emerged as a strong competitor to Ethereum

due to its low transaction costs and high throughput, with the

ability to process thousands of transactions per second (TPS)

[1]. However, the platform’s architecture introduces specific

security vulnerabilities in its smart contracts. Identifying and

addressing these vulnerabilities is crucial to the long-term

security of the Solana ecosystem. This paper provides an in-

depth analysis of six critical vulnerabilities and assesses how

automated verification tools such as VRust and fuzzing

techniques can detect these vulnerabilities [2]. We also

incorporate real-world case studies to validate the

effectiveness of these tools.

2. Common Vulnerabilities in Solana Smart Contracts

Solana’s smart contracts face unique security challenges

due to its architectural choices. The following are six

prevalent vulnerabilities found in Solana smart contracts:

2.1 Missing Ownership Checks

In Solana, accounts are governed by a program ID that

manages data access. If smart contracts fail to verify whether

an account is owned by the intended program, unauthorized

access and data manipulation may occur [3].

Detection: VRust has shown effectiveness in identifying

missing ownership checks through static analysis, ensuring

that contracts verify account ownership during development.

2.2 Missing Signer Checks

Signer checks validate that the account executing sensitive

operations, such as fund transfers, is authorized to do so.

When signer checks are omitted, unauthorized entities may

carry out critical operations [3].

Detection: VRust is highly effective in detecting missing

signer checks due to its static nature, but FuzzDelSol is

better at catching complex scenarios involving signer

authorization through stress testing.

2.3 Cross-Program Invocation (CPI) Vulnerabilities

Solana supports cross-program invocations (CPI),

allowing one program to call another. If validation is not

properly implemented, malicious programs may be invoked

via Program Derived Addresses (PDAs), which can lead to

significant exploits [1].

Detection: FuzzDelSol excels in uncovering CPI-related

vulnerabilities, especially under conditions where static

analysis may not detect dynamic behaviors.

2.4 Arithmetic Overflow/Underflow

Unchecked arithmetic operations, particularly in financial

applications, can result in overflow or underflow. Although

Rust’s debug mode detects these issues, in release mode,

safety checks are often disabled for performance, leaving

room for exploitation [2].

Detection: VRust catches arithmetic issues in debug mode,

while FuzzDelSol can stress-test the system to reveal

overflows/underflows that occur during runtime.

- 371 -

ACK 2024 학술발표대회 논문집 (31권 2호)

2.5 Account Confusion

This occurs when smart contracts fail to differentiate

between user-provided accounts and trusted program

accounts. Attackers may supply malicious accounts that are

mistakenly treated as trusted [1].

Detection: FuzzDelSol is more effective in detecting

account confusion vulnerabilities, particularly when random

data triggers unexpected program behaviors.

2.6 Missing Key Checks

When a program fails to verify that a specific account is the

intended one, security breaches like the Wormhole attack,

which resulted in a $320 million loss, can occur [4].

Detection: VRust is suitable for detecting missing key

checks by verifying contract logic, but FuzzDelSol can also

catch this issue dynamically under extreme input conditions.

3. Automated Verification Techniques for Detecting

Vulnerabilities

Automated tools play a vital role in ensuring the security

of Solana smart contracts. We focus on two prominent

techniques static analysis (VRust) [3] and fuzzing

(FuzzDelSol) and their effectiveness in detecting the

vulnerabilities listed above.

3.1 Static Analysis in Rust (VRust)

VRust performs static analysis on Solana programs, using

Rust’s Mid-level Intermediate Representation (MIR) to

preemptively catch errors during development [3]. VRust is

particularly strong at detecting missing ownership checks,

missing signer checks, and arithmetic overflows, but it may

struggle with dynamic vulnerabilities like account confusion

or CPI issues.

3.2 Fuzzing Techniques

Fuzzing introduces random data into smart contracts to

trigger unexpected behaviors. Tools like FuzzDelSol stress-

test contracts by supplying unpredictable inputs, making

them highly effective in detecting runtime issues such as CPI

vulnerabilities, account confusion, and arithmetic

overflow/underflow [1]. This method is especially useful for

dynamic vulnerability detection, which is not always possible

with static analysis.

4. Case Studies and Results

We examine two real-world case studies to evaluate the

effectiveness of the above-mentioned automated tools in

detecting vulnerabilities in Solana smart contracts.

4.1 Solana Program Library (SPL)

The Solana Program Library (SPL) is a collection of

programs frequently used in the ecosystem. VRust was used

to analyze SPL for missing ownership and signer checks,

successfully detecting these vulnerabilities in early versions

of the program. However, fuzzing with FuzzDelSol revealed

additional vulnerabilities related to CPIs and arithmetic

overflow, which static analysis tools missed [3]. This

highlights the complementary nature of these tools, with

VRust excelling at static issues and FuzzDelSol uncovering

dynamic vulnerabilities.

4.2 Mango Markets and Metaplex

Mango Markets and Metaplex are custom programs that were

analyzed for vulnerabilities such as missing signer checks

and unchecked arithmetic operations. VRust successfully

detected missing signer checks, while FuzzDelSol uncovered

additional issues with arithmetic overflow/underflow that

were not caught by static analysis. Moreover, the fuzzing

approach revealed potential CPI vulnerabilities that could be

exploited under specific conditions, further illustrating the

importance of combining static and dynamic analysis tools

[1].

5. Conclusion

The security of Solana smart contracts is crucial for the

platform’s continued growth [4]. Our analysis shows that

while tools like VRust are effective at detecting static

vulnerabilities like missing ownership checks and signer

checks, dynamic analysis techniques like FuzzDelSol are

essential for uncovering runtime vulnerabilities such as CPIs

and account confusion. The combined use of these tools

provides a robust defense against the wide range of

vulnerabilities present in Solana smart contracts. Future work

should focus on enhancing these tools to address emerging

security threats as the Solana ecosystem continues to evolve

[5].

Acknowledgments

This research was supported by the MSIT (Ministry of

Science and ICT), Korea, under the Special R&D Zone

Development Project (R&D) - Development of R&D

Innovation Valley support program (2023-DD-RD-0152),

supervised by the Innovation Foundation.

References

[1] Sven Smolka, Jens-Rene Giesen, Pascal Winkler,

Oussama Draissi, Lucas Davi, Ghassan Karame, Klaus

Pohl. "Fuzz on the Beach: Fuzzing Solana Smart

Contracts." Proceedings of the 2023 ACM SIGSAC

Conference on Computer and Communications Security

(CCS '23), Copenhagen, Denmark, 2023, pp. 1197-1211.

[2] Tien N. Tavu. Automated Verification Techniques for

Solana Smart Contracts. Undergraduate Research

Scholars Program, Texas A&M University, 2022.

[3] Siwei Cui, Gang Zhao, Yifei Gao, Tien Tavu, Jeff Huang.

"VRust: Automated Vulnerability Detection for Solana

Smart Contracts." Proceedings of the 2022 ACM

SIGSAC Conference on Computer and Communications

Security (CCS '22), Los Angeles, USA, 2022, pp. 639-

652.

[4] Sébastien Andreina, Tobias Cloosters, Lucas Davi, Jens-

Rene Giesen, Marco Gutfleisch, Ghassan Karame, Alena

Naiakshina, Houda Naji. "Defying the Odds: Solana's

Unexpected Resilience in Spite of the Security

Challenges Faced by Developers." arXiv preprint,

arXiv:2406.05231 [cs.CR], 2024.

[5] Fang, J., & Qu, H. "VeriOover: A Verifier for Detecting

Integer Overflow by Loop Abstraction." Proceedings of

the 13th International Workshop on Computer Science

and Engineering (WCSE 2023), Ocean University of

China, Qingdao, China, 2023.

- 372 -

