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Abstract: This research presents a method for Augmented Reality (AR) object superimposition 

leveraging reinforcement learning techniques to significantly reduce manual input during the 

exploration of digital information on construction sites. A distinctive feature of this approach is the 

application of a reinforcement learning neural network, trained with pairs of real and virtual view 

images, for AR superimposition. This approach enables the precise adjustment of the virtual camera's 

position and orientation within a virtual scene, aiming to seamlessly integrate AR objects into real-world 

views. This research initially focuses on simpler scenarios involving 2 and 3 degrees of freedom for 

orientation and position adjustments. The purpose is to explore the feasibility of the application through 

those experiments, with the expectation that the results would be interpreted positively. These initial 

findings highlight the promise of the suggested method in improving AR applications, especially within 

the construction sector, by enabling more natural and precise merging of virtual and physical objects, 

without requiring user intervention. 
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1. INTRODUCTION 

As the construction industry embraces digital transformation, the demand for effective information 

visualization techniques increases. Alongside these developments, a notable shift towards paperless 

projects signifies a wider trend of change within the sector, indicating a broad spectrum of changes within 

the sector. In line with the establishment of digital technologies like digital twins and paperless projects, 

there is a critical need for effective methods for workers to access digital information from construction 

sites. In particular, the ability to visualize 3D models, such as BIM, is crucial for intuitive access to 

construction site information. The increasingly used Augmented Reality (AR) technology serves as an 

excellent alternative for the next-generation user interface. AR technology provides an environment 

.models3Dwithinteractcanuserswhere Visualizing 3D models through AR technology offers an 

intuitive experience that is incomparable to checking the shape of a structure through traditional 2D 

drawings or even viewing 3D models on a computer screen. These advantages can also apply to AR 

devices with flat displays, such as smartphones or tablets, and are especially enhanced in commercial 

HMD AR devices like the HoloLens or Magic Leap. 

However, accurately superimposing onmodels3Dvirtual to real scenes with AR technology presents 

significant challenges. For superimposition, the AR device must obtain or be able to calculate accurate 

relative position and orientation between the real scene and the device. Approaches for calculating 

position and orientation can be broadly divided into two categories: one is based on image processing 
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that utilizes 2D information, and the other uses various sensors of the AR device to utilize 3D 

information. Image processing-based methods can be further divided into more detailed approaches.  

The most traditional and widely used method is the photogrammetric approach, which estimates 

position and orientation by extracting features from 2D images. This method allows for the calculation 

and adjustment of the AR object or camera's position and orientation by using image features extracted 

from captured images. It requires setting common feature points (control points) between the real object 

and the 3D model or some other geometric features for similarity comparison.  

A more refined method involves the use of planar image markers, such as QR Codes or ArUco, to 

enhance accuracy and ease of use in applications. This method employs the photogrammetric method by 

recognizing markers to ascertain position and orientation. It simplifies the process by eliminating the use 

of control points, thanks to the employment of planar markers. However, these methods still require 

attaching control points or markers to each structural component, which presents challenges in terms of 

maintenance and leads to considerable expenses for implementation on construction sites [1][2][3]. 

Direct approaches that utilize 3D information for calculating relative position and orientation for 

superimposed AR objects allow for direct comparison, which is a significant difference from methods 

that use 2D information. Their functionality relies on various sensors that capture the shape of the 

environment around the AR device and ascertain the device's position and orientation, making their 

performance largely dependent on sensor precision. Given the AR device's advantage of being more 

portable, there is a trade-off between the performance of the sensors and the size of the device. Typically, 

data from GNSS (Global Navigation Satellite System), IMU (Inertial Measurement Unit), ToF (Time of 

Flight) sensors, etc., could be utilized, but their accuracy and precision are often lower than industrial 

requirements for construction [4][5][6].  

So, this research proposes a method that can overcome the limitations of existing methods. The 

proposed method utilizes a neural network trained by reinforcement learning to perform AR 

superimposition. That neural network is trained to take virtual view and real view images as inputs and 

calculate the pose information of the virtual camera displaying the AR object. It can be seen more 

accurately adjust the position and orientation calculated from inaccurate sensor data using the image 

information of the object viewed through the camera. It aims to achieve its purpose without user 

intervention or using control points or markers. This research is still in its early stages and will be a study 

to verify its applicability. The performance of the trained neural network will be reviewed to examine 

the applicability of the proposed method.  

2. METHODOLOGY 

 

Figure 1. The framework of the proposed method 

The framework of the proposed method for the automated AR superimposition based on reinforcement 

learning in this study is illustrated in the Figure 1. The user's scene (which the AR object will display) 
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is captured as an image (or video) by the camera mounted on the AR device, along with synchronized 

sensor data such as IMU and GNSS. These sensor data are used to settle the user's position and 

orientation, i.e., they are utilized to construct the observation. The user's position and orientation can be 

used to define the user's view in the virtual space. Within this virtual view, a 3D virtual model generated 

from BIM can be placed. If the sensor data were highly accurate, this virtual model could be perfectly 

superimposed on the real one without additional adjustments. However, as previously noted, the 

precision of these sensors is insufficient, implying that they had significant errors that need to be 

corrected. Using a reinforcement learning network trained with image data for this error correction 

process is the primary approach of this research. The neural network is trained by reinforcement learning 

with two types of image data for training: One reflects the real view, and the other reflects the virtual 

view. The neural network generates a vector as output for the input images, which adjusts the virtual 

camera to move to the correct position (called an action). Therefore, it is necessary to assess whether 

the output of the neural network has generated the accurate results required for AR superimposition. 

Based on this assessment, rewards are allocated during the reinforcement learning process. 

2.1. Learning process 

 

Figure 2. The process of reinforcement learning for AR superimposition 

 

The proposed framework of the reinforcement learning-based AR superimposition method is as shown 

in the Figure 2. The neural network receives two images corresponding to the observation as inputs and 

generates a series of actions through convolutional layers and fully connected layers. These actions are 

used to control the agent, and the observation is updated from the changed environment, with this 

process repeating to adjust the weights of the network. During this process, it is necessary to determine 

the reward scheme, defining when and how feedback is provided for network updates. The details of 

each step are described below. 

2.2. Observation 

 

Figure 3. Real object and its images captured from webcam and virtual camera 
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In this proposed AR superimposition method, the images used as input to the neural network are of 

two types: real view image and virtual view image. In this research, real-view images are captured using 

the AR device's camera, which was replaced by a webcam for the experiments. Virtual view images are 

created from a virtual camera that mimics the real camera in a digitally constructed environment, 

utilizing the Unity engine for this virtual reconstruction. 

The AR object for superimposition was created as a 3D model and printed using a 3D printer (as shown 

in Figure 3. (a)), and the same model was imported into the Unity environment to be used as a virtual 

object. The real view (Figure 3. (b)) observed through the webcam and the virtual view (Figure 3. (c)) 

implemented are shown in the figures. 

The image captured through the webcam is projected with camera intrinsic parameters, so to accurately 

project the virtual view image, the same intrinsic parameters must be set for the virtual view camera. To 

achieve this, the camera calibration for the webcam was conducted to obtain intrinsic parameters, which 

were then applied to the virtual view camera. After this process, each image will be used as input to the 

neural network. 

2.3. Agent and action 

In reinforcement learning, the agent refers to the entity that performs actions based on the state within 

a given environment. In this case, the Agent could either be the virtual object or the virtual camera 

observing that virtual object. The primary objective of the agent is to establish a corresponding spatial 

relationship between the virtual object and camera, mirroring that of the real object and camera. 

In this study, the virtual camera was set as the agent to calculate the pose, or TRS (Translation, Rotation, 

Scale) matrix of the virtual camera based on the center coordinates of the virtual object. Therefore, the 

actions generated according to the observation are designed to adjust the pose of the virtual camera. 

Actions can have a total of 9 degrees of freedom (DOF) since Translation, Rotation, and Scale each have 

3 DOFs. However, assuming that the scale error can be ignored when utilizing BIM models to an AR 

object, we only consider changes in 6 DOFs for Translation and Rotation. 

2.4. Terminal state 

The situation where the agent reaches the final objective or fails, resulting in the end of the episode, is 

referred to as the terminal state. The actions of the agent leading up to the terminal state are evaluated 

based on their impact on reaching the terminal state and can be rewarded accordingly. Deciding when 

and how much reward to distribute is a crucial aspect of reinforcement learning. In this study, the agent 

successfully completing the episode and reaching the terminal state is described as arriving at the goal. 

The role of the agent is to translate and rotate the virtual camera so that the projection of the AR object 

appears identical in both the real view and the virtual view. This will be the final goal of the agent. 

Therefore, it is necessary to have a process for determining whether the agent has reached its goal. While 

user-driven observation through the device would provide the best evaluation, it eliminates automation, 

rendering reinforcement learning itself impractical. For reinforcement learning, the process of 

determining the terminal state must be automated, so that numerical values or criteria are required. 

 

Figure 4. Control points on each objects and images 
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A method was utilized to assess alignment by designating specific points on the AR object as control 

points. As shown in Figure 4. (a), common points between the real and virtual objects were established, 

and the goal or failure was determined based on whether these points, projected onto each image (Figure 

4. (b) and (c)), matched each other. The control points on the real object are denoted as 𝑅, and the control 

points on the virtual object as 𝑉. And their pixel coordinates on the image plane are represented as 𝑟 

and 𝑣. The sum of the distances between each 𝑟 and 𝑣 is named as distance error (𝐷𝐸). So, when this 

value is at 0, it is considered that the two objects are perfectly aligned. Due to various noises that can 

introduce errors, converging this value to 0 is necessary to achieve our objective. The threshold for this 

value is defined as 𝐷𝑇. Therefore, the agent is considered to have reached the goal in the following case: 

𝐷𝑇 > 𝐷𝐸 = ∑ |𝑟𝑛 − 𝑣𝑛|
𝑛
𝑖=1                                                                   (1) 

2.5. Reward and update feedback 

Giving rewards or penalties based on the agent's actions, whether the agent reaches the goal or during 

the process of reaching it, is a core element of reinforcement learning. The training performance and 

speed can be influenced by the reward function. In this study, various methods of giving rewards were 

devised and applied, and the differences in training performance and speed were examined. The reward 

functions set in the experiment are as follows: 

1. (+1) reward is given only when the goal is reached. 

2. (-1) penalty is given only in case of failure. 

3. (-1 / Max step) penalty is given at each step. 

4. Reward gradient 

(The reward can be given in single episode range from [-1, 1].) 

3. EXPERIMENT AND DISCUSSION 

3.1. Experimental setup 

 

Figure 5. Experimental setup 

 

The experiment was conducted on a small object measuring 10x10x10cm3. The target object was 

created as a 3D model and then printed using a 3D printer (as shown in Figure 5. (a) and (b)). A webcam 

was assumed to be the camera of the AR device. Figure 5. (a) is an example picture of the positional 

relationship between the webcam and the target object. As depicted in Figure 5. (c), four control points 

located on the surface of the object were selected.  

Agent’s actions were set as discrete actions, allowing for a maximum movement of up to 1 cm per 

step in each axis, and rotation was set to allow for a maximum rotation of up to 0.1 degrees per step. 

Training was carried out in stages, commencing with simpler tasks involving only 2 DOFs out of a 

possible 6. 

∙ 2 DOF: y, z-axis translation 

∙ 3 DOF: x, y, z-axis translation 
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3.2. Experimental results and discussion 

The training results were as follows:  

 

Table 1. Training results table 

Actions Reward method Training time (s) Success rate 
Distance Error (cm) 

Average Max Min 

2D 

(Goal) +1 reward 15162.510 100% 0.122 0.141 0.100 

(Fail) -1 reward 14697.626 100% 0.122 0.141 0.100 

Penalty for each step 14898.325 100% 0.125 0.141 0.100 

Use distance gradient 13000.000 100% 0.114 0.141 0.000 

3D 

(Goal) +1 reward 14856.111 100% 0.206 0.800 0.000 

(Fail) -1 reward 12232.062 100% 0.253 0.800 0.000 

Penalty for each step 14749.303 100% 0.240 0.800 0.000 

Use distance gradient 10544.721 100% 0.313 0.800 0.000 

 

The success rate is 100% for all training results, with the distance error averaging around 0.1 to 0.3 

cm. Although the results show good performance, it is important to consider that these results only 

concern 2 and 3 DOFs, with low levels of training difficulty. There were some differences in training 

time, but no clear differences were observed in success rate and superimposition performance by 

different reward functions. 

The results achieved from training using still images and small objects, specifically concentrating 

only on translation excluding rotation, are quite constrained. To successfully achieve the ultimate goal 

of AR superimposition, it is imperative to ensure that performance is robust enough for real-time video, 

in addition to still images. Additionally, in construction sites, it must be applied to much larger objects 

than those considered in this study. Further research is needed to overcome these limitations. 

The primary objective of future research is to diversify and enhance the criteria for determining the 

terminal state. The current configuration method using control points has many limitations, with the 

most problematic being that it can hinder the automation of reinforcement learning. To apply the current 

method to real-time video, it must be possible to detect and continuously track control points from video 

streams using computer vision algorithms. However, the loss of tracking may require significant user 

intervention. Furthermore, if physical control points are not visible in the real-time streaming video, it 

could halt further training. Therefore, an alternative method for defining the terminal state is necessary. 

While the marker-based method mentioned in the introduction allows for solid tracking and direct use 

of pose information, some solutions are still necessary to overcome problems such as marker occlusion 

and the maintenance of markers. As an alternative, using scan data obtained through ToF sensors from 

the AR device is also being considered. After refining the criteria for terminal state determination, the 

next objective is to expand the degrees of freedom of the agent in the training for 6 DOFs. 

4. CONCLUSION 

This study presents a method to achieve AR superimposition through reinforcement learning using 

visual observations, with the aim of minimizing user intervention in accessing construction site 

information. An artificial neural network is trained for this purpose, utilizing two types of images as 

inputs: a real view image capturing the appearance of the AR object in the real scene, and a 

corresponding virtual view image. The neural network adjusts the position and orientation of the virtual 

camera within the virtual scene using these images, essentially identifying the correlation between the 

images and the pose of the virtual camera. To train the network, a criterion is needed to define the 

terminal state, and control points are used as the criterion in this study. The pose of the virtual camera 

encompasses a total of 6 DOFs, comprising 3 DOFs for position and three for orientation. Considering 

the preliminary nature of this research, training initially focused on the more manageable 2 and 3 DOFs, 

with experiments for 4 or more DOFs currently underway. For the training limited to 2 and 3 DOF, the 

goal achievement rate is 100%, with an average distance error of 0.1 to 0.3 cm. Various reward strategies 

were explored during the reinforcement learning process, yet no significant differences in learning 

outcomes were observed. However, as the training becomes more challenging and complex, differences 

are expected to emerge. This study is empirical research aimed at assessing the feasibility of automated 
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superimposition methods for various object shapes. Future research will extend to learning up to 6 DOFs 

and will incorporate more advanced methods for defining the terminal state beyond control points. 
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