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Abstract: In recent years, the construction industry has rapidly adopted offsite-manufacturing and 

distributed construction methods. This change brings a variety of challenges requiring innovative 

solutions, such as the utilization of AI-driven and generative design. Numerous studies have explored 

the concept of multi-objective generative design with genetic algorithms in construction. However, this 

paper highlights the challenges and proposes a solution for combining generative design with distributed 

construction to address the need for agility in design. tachieveTo his goal, the research delves into the 

development of a multi-objective generative design optimization using a weighted genetic algorithm 

based on simulated annealing. The specific design case adopted is an educational complex. The 

proposed process strives for scalable economic viability, environmental comfort, and operational 

efficiency by optimizing modular configurations of architectural spaces, facilitating affordable, scalable, 

and optimized construction.  Rhino-Grasshopper and Galapagos design tools are used to create a virtual 

environment capable of generating architectural configurations within defined boundaries. Optimization 

factors include adherence to urban regulations, acoustic comfort, and sunlight exposure. A normalized 

scoring approach is also presented to prioritize design preferences, enabling systematic and data-driven 

design decision-making. Building Information Modeling (BIM) tools are also used to transform the 

optimization results into tangible architectural elements and visualize the outcome. The resulting 

process contributes both to practice and academia. Practitioners in AEC industry could gain benefit 

through adopting and adapting its features with the unique characteristics of various construction 

projects while educators and future researchers can modify and enhance this process based on new 

requirements. 
 

Key words:  generative design, genetic algorithm, educational complex, Rhino-Grasshopper 

optimization 

1. INTRODUCTION 

In the urge of construction industrialization, there is a significant trend towards distributed 

manufacturing and modular Athewithinconstruction rchitecture, Engineering, and Construction (AEC) 

sector[1], [2]. With the aim of proposing sustainable and affordable housing solutions, along with its 

foreseeable economic boon, a variety of challenges are created, requiring innovative methodologies [3]. 
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In order to actualize the idea of productizing the building components and advance modular 

construction, efficient and flexible design solutions for building components and modules are of critical 

necessity [4], which underscores the potential assistance with Artificial Intelligence (AI) and machine 

learning algorithms. While AI originated applications are gaining their position in the AEC industry [5], 

generative design has experienced a significant rise in interest and innovation [6]. Within the dynamic 

framework of industrial production, numerous decisions should be made by designers and architects 

within a limited timeframe [7]. Consequently, in order to facilitate the decision-making process and 

achieve optimized results for various specifications, generative design is applied not only to ensure the 

building quality but also the adherence to sustainable construction principles. As one of the essential 

tools for generative design, genetic algorithms are entering a seminal phase where researchers target at 

leveraging design optimization for solving complex and intricate design challenges with efficient and 

feasible computing power [8]. 

In this paper, one specific case utilizing multi objective design optimization is proposed and analyzed. 

Our goal is to design an aesthetically appealing, economic, scalable, and consequently modular 

educational and residential complex which follows the urban regulations and provides a well-lit, quiet, 

and accessible environment for occupants. The building is designed to foster the development of talented 

individuals with financial limitations. On the one hand, the non-profit nature of the project requires 

careful consideration of economic viability during the design phase, while the plans for scaling the 

operation in the future highlight the need for an easily repeatable design approach. The combination of 

these factors justifies the implementation of modular construction. On the other hand, this building's 

function as an educational complex reveals the significance of maintaining indoor environment quality 

within a comfort range to ensure the students’ well-being. Therefore, sunlight utilization, acoustic 

comfort, and vertical accessibility are the three major factors for design optimization. Besides, urban 

regulations and emergency evacuation requirements are constraints that must be adhered to. 

In order to effectively address the issues mentioned in the problem statement, this study is targeting at 

finding the answers to the following questions: 

1 How does the proposed design methodology address the design optimization goals? 

2 To what extent does the proposed generative design methodology demonstrate 

advancement in terms of design efficiency?  

3 Compared with conventional design, how does the proposed methodology succeed in 

providing economic justification and environmental sustainability? 

2. METHODOLOGY 

As for methodology, this research employs a variety of software and plug-ins including Rhino 3d, 

Grasshopper, Pollination (Ladybug Tools), Lunchbox, and Galapagos to create a multi objective 

weighted genetic algorithm. The mentioned algorithm serves as a flexible and parametric tool for the 

designers, enabling them to effectively deal with the design challenges and find the optimal point in 

which the accumulated weighted result of all quantified variables representing design requirements are 

at the desired maximum. The input data for the proposed algorithm includes the Site boundary curve, 

annual weather data, Geographical Information System (GIS) information from the Open Street Map 

(OSM), urban regulation variables, module dimensions and preferred numeric weights for quantified 

environmental variables which consists of annual sunlight exposure, distance from noise source and 

accessibility of the indoor space. 

Considering urban regulations and module dimensions, a variable landscape of the modular building 

is constructed which describes the current spatial arrangement of building modules within a three-

dimensional environment. Meanwhile, during each iteration of genetic optimization, the selections from 

the variable landscape are stored in variable arrays, which is the gene pool for the genetic algorithm. 

Each variable array represents an alternative 3D configuration which would later be analyzed by the 

grasshopper functions. GIS information from the OSM and Annual weather data are also input data for 

this analysis. The expected analysis results should reflect the proportion of environmental variables 

which will later be assigned with numerical weights respectively to form a fitness function whose result 

is within the range of [0,100].  

As for the specific method of multi objective optimization, Simulated Annealing (SA) is applied in 

this project, which is a highly efficient and resilient method that delivers outstanding solutions for both 
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single and multiple objective optimization challenges. SA could achieve the optimal solution for a 

single-objective optimization problem and generate a Pareto set of solutions for a Multi objective 

optimization problem [9]. The concept draws inspiration from the analogy with thermodynamics, 

specifically the cooling and annealing process observed in metals. Combining genetic algorithms with 

simulated annealing enhances the probabilistic feedback significantly, leading to reduction of 

computation time [10]. Although this method is not a new approach for solving complex problems with 

multiple optimization objectives, applying it under the context of design for modular architecture and 

construction is considered as the novelty and contribution of this research.  

As for the outputs, by using simulated annealing method, the input gene pool would gradually evolve 

through rapid trial, error and improvement process. The genetic algorithm optimization will provide the 

final array of numbers representing the selected positions for the modules. The environment variables 

analysis results for the selected arrays are the optimal results as the goal for the simulation is to achieve 

100% for the fitness function within limited time duration. After desired goals are met, design 

alternatives with the highest optimization score would be compared manually and the most aesthetically 

appealing option would be selected by the designer based on clients’ preference. Finally the clients’ 

preferred option undergoes detailed design and visualization. 

3. OPTIMIZATION PROCESS 

To address the first research question, which is “clarifying the breakdown structure and quantification 

methods employed for achieving the optimization goals”, this section adopts a simplified example to 

explain the gene pool of the simulation. Followed by this example, various components of the fitness 

function could be explored with their proposed structure and effects on the optimization results.  

3.1 Variable Landscape 

In order to perform Generative Design simulations, it is necessary to provide the algorithm with a set 

of input variables. These variables are selected building blocks of the fitness function that can be freely 

modified by the simulation. During each iteration, the simulation will use these variables to adjust the 

results of the fitness function. The result will then serve as feedback for the adjustments of the next 

iteration. In the following paragraphs the study will explain the processes of defining the environmental 

variables, limiting the variable landscape and embedding the urban regulations. 

3.1.1 Define the Environmental Variables 

In this example, a 60ft. x 60ft flat square will serve as a simplified model of the construction site. 

Common urban regulations are followed, which vary among different projects based on contexts and 

functions. But the adjustments of urban regulations could be applied globally. Here are the steps to 

simulate the generative design algorithm with the necessary inputs: 

1. Import the precise boundary curve of the design site into Rhino software. 

2. Identify the geographical coordinates of the design site reference points from Global Positioning 

System (GPS).  

3. Import a 3D model of the urban environment with the help of available platforms such as Open 

Street Map (OSM). Create environmental models using conventional 3D CAD modeling tools. 

4. Decide the size of construction modules. 

5. Create a reference grid for the placement of modules based on the natural conditions of the 

construction site. 

6. Assign an index for available positions on the reference grid (See Figure 1). 

7. Extend the reference grid into the third dimension of the space and assign index for building levels 

based on design requirements and height limitations. 
 

8. Import the weather data from the closest weather station in Energy Plus Weather (EPW) format 

provided by “Ladybug Tools”. This data will be used for solar radiation analysis and optimization 

in the later section. 
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Figure 1: Create the indexed reference grid for the example construction site 

3.1.2 Limit the Variable Landscape 

After compiling the environment model requirements, we need to define selector arrays (collections 

of variables) describing the selected grid tiles for arranging the modules in three dimensions. These 

arrays will form a variable landscape (Gene Pool) for the simulation. This way the algorithm can iterate 

through various alternatives for the configuration of modules in 3D space and compare the analysis 

results with each alternative. In this example (see Figure 2), an 5 × 1 array is created for selecting 

module positions from a landscape of nine available positions. Considering the exponential impact of 

repetitive selection and the processing power required for analyzing each alternative, the limitation of 

variable landscape is necessary. 
 

 

Figure 2: Example selection array with the length of 5 and filtering the repetition 

To decrease the calculation time , it’s of great necessity to limit the available options to avoid repeated 

trial/error cycles by the algorithm. Using a selector loop, if a specific tile is selected during a single 

iteration for placing a module, the mentioned tile will be removed from the variable landscape during 

the selection stage for that iteration (see Figure 2).   

3.1.3 Implement Urban Regulations 

To embed the urban regulations into the generative design process, first regulation limits should be 

defined and broken down into measurable variables. For this example, constraints are as follows (see 

Table 1). 

Table 1. Design constraints 

Constraint types Constraint content Values 

Environmental 

conditions 

Lot dimensions 60 𝑓𝑡.×  60 𝑓𝑡. 

Lot area 3,600 𝑠𝑞𝑓𝑡. 

Designer decisions Module dimensions 20 𝑓𝑡.×  20 𝑓𝑡. 

Total number of positions 27 

Urban regulations Lot coverage of 1st floor 60% 

Occupancy ratio (Total available area for all levels/ Lot area) 220% 

Maximum number of levels 3 

൬
9

5
൰ 
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To include these constraints in design generation, the algorithm uses a combination of mathematical 

functions in Grasshopper. These functions use environmental conditions, design decisions and urban 

regulations as input variables and perform the calculations described below. 

 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 1𝑠𝑡 𝑓𝑙𝑜𝑜𝑟 =  𝐿𝑜𝑡 𝑎𝑟𝑒𝑎 ×  𝐿𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 1𝑠𝑡 𝑓𝑙𝑜𝑜𝑟                                       (1)  
=  3,600 𝑠𝑞𝑓𝑡.  ×  60% =  𝟐, 𝟏𝟔𝟎 𝒔𝒒𝒇𝒕. 

 

 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑜𝑓 1𝑠𝑡 𝑓𝑙𝑜𝑜𝑟 =  𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 1𝑠𝑡 𝑓𝑙𝑜𝑜𝑟 / 𝑀𝑜𝑑𝑢𝑙𝑒 𝑎𝑟𝑒𝑎                    (2) 

=  ⌈2,160 𝑠𝑞𝑓𝑡.  / (20 𝑓𝑡.  ×  20 𝑓𝑡. )⌉ =  ⌈5.4⌉  =  𝟓 

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑜𝑓 𝑤ℎ𝑜𝑙𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔                                                                                                       (3)  
=  𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 / 𝑀𝑜𝑑𝑢𝑙𝑒 𝑎𝑟𝑒𝑎 

=  ⌊3,600 𝑠𝑞𝑓𝑡.  ×  220% / (20 𝑓𝑡.  ×  20 𝑓𝑡. )⌋ =  ⌊19.8 ⌋ =  𝟐𝟎 
 

Based on these calculations the generative algorithm will be selecting 20 modules to be placed on 27 

available positions. 5 modules are on the first level, while 15 modules are on the second and third level 

combined. These numbers will determine the length of the arrays which will be used for storing various 

3D configurations for testing and analysis during each iteration (See Figure 3). 
 

 

Figure 3: Process of using variable arrays for generating 3D modular configurations 

3.2 Fitness Function 

As explained in the previous section, a vital component for every generative design optimization is a 

fitness function. To effectively analyze and compare various configurations suggested by the simulation 

during each iteration and provide the algorithm with valid and corrective feedback, it is necessary to 

pay significant attention to various factors of the fitness function, including sunlight exposure, vertical 

access and integration, and noise pollution. Each factor is broken down into several aspects. The 

assessment of design for each aspect is through a normalized output value within the range of  0 to 1 

with two decimal numbers, which is generated during each iteration of the simulation. If the output 

value for an aspect is 0.45, it means that that the generated design has the score of 45/100 for the 

mentioned aspect. 

3.2.1 Analyzing Sunlight Exposure 

To accurately perform analysis for annual exposure to sunlight for the modules and playground, this 

study uses a free and open-source repository of functions for Rhino and Grasshopper called “Ladybug 

Tools.” It enables the analysis and visualization and of weather data using Energy Plus Weather (EPW) 

format in Grasshopper. As displayed in Figure 4, the inputs include the annual weather information from 

EPW file, specific time in the format of hours in a year (8:00, 10:00, 12:00, 14:00, 16:00 of the first and 

15th day in every month), the 3D arrangement of modules and the playground, as well as the context 

which represents how other modules, neighboring buildings, and objects affect the annual sunlight. 

Considering the hardware limitations for the simulation it is necessary to limit for time points of 

daylight. What’s more, it is also necessary to consider the effects of other modules during the calculation 

of annual sunlight during the simulation. 

Variable Array Selected tiles 

(index) 

Visualized 
Selection 

3D Configuration 

2nd, 3rd Levels 

1st Level 

2nd, 3rd Levels 
 

1st Level 
 

൬
9

5
൰ 

൬
18

15
൰ 
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Figure 4: Solar radiation analysis for façade and results snapshot for both aspects 

As shown in Figure 4, process of generating the results of façade and playground is demonstrated. The 

goal is to maximize the amount of annual sunlight for the building façade and playground with different 

intentions. The façade should receive the maximum sunlight ultimately in order to guarantee the lighting 

conditions for the classrooms and living areas. As for the playground, however, as long as the solar 

energy could satisfy the requirement of sufficient green area construction, the results are acceptable.  

During each iteration, maximum solar energy for every faces is identified and then multiplied with the 

total number of evaluated surfaces. This method ensures the final output range from 0 and 1. The highest 

value of the analysis is 65.45 kWh/m2.  

3.2.2 Embedding Acoustic Comfort 

Another significant factor of the fitness function is acoustic comfort. To simplify the analysis of sound 

interference within limited time, the goal of the optimization is to minimize the importunate noise by 

maximizing the accumulated distance to adjacent noise sources and the number of obstacles on the path 

of soundwave transmission. Firstly, to measure the accumulated distance, three streets and an adjacent 

lot parallel to each side of the construction site are drawn individually. During each iteration, lines are 

generated between the central point of each module and its closest point to each street line (see the blue, 

cyan, green, and orange lines in Figure 5). In the next step, the length of these lines is measured, and all 

of these length are accumulated into a single variable called “accumulated distance for street / lot x”. 

Finally, in order to remap the “Accumulated distance” value for each street or lot, the longest possible 

distance is determined based on the available module positions. By multiplying this distance with the 

total number of modules from the urban regulations, the maximum value of the accumulated distance 

for each street or lot could be calculated. By dividing the accumulated distance to its maximum value, 

a score withing the range of 0 to 1 is generated. The calculation process is demonstrated in equation (4), 

in which “m” stands for module number, “n” stands for total number of modules, dx, m stands for the 

distance to segment x (Where segment is representing a street or neighboring lot) for module m, hdx 

stands for the distance of the furthest available tile to segment x, ADx stands for the accumulated 

distance for segment x, and SDx sands for the final distance score for segment x. 

 

Figure 5: Accumulated distance and collision with obstacles to adjacent noise sources demonstrated 

in a 5-module configuration 
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𝑆𝐷𝑥 =
(𝐴𝐷𝑥)

ℎ𝑑𝑥
=

(∑ 𝑑𝑥,𝑚
𝑛

𝑚=1
)

ℎ𝑑𝑥
                                                                                                                                      (4) 

 

Another proposed method of minimizing noise pollution for each module is through the avoidance of 

intrusive noise by maximizing the number of obstacles on the path to the noise origin. To achieve this 

goal, the number of collision points on the colored lines drawn in Figure 5 are recorded and named 

“Noise path collisions module(m) , street(x).” Then, by accumulating the “Noise path collisions” for all modules 

related to segment x, “Accumulated collisions for segment x” is calculated.  

 

The number of total available modules for each project is a constant number. Given that each straight 

line can have a maximum of two collision with a cube, the maximum collisions for every module (the 

maximum value for Noise path collisions module(i) , street(j)) would be the total number of modules multiplied 

by two. Consequently if “n” is equal to the total number of modules, the highest value for “Accumulated 

collisions for segment x” can be determined by using the following formula: 

 

𝑀𝑎𝑥 (𝐴𝐶𝑥)  =  2 × (𝑛 × (𝑛 − 1))                                                                                                                     (5) 

  

In this formula, the path from the central point of each module collides twice with every other modules. 

By dividing “Accumulated collisions for segment x” with its higher limit, another score is created using 

number values with two decimals within the range of 0 to 1. The calculation process is demonstrated in 

equation (6), in which “m” stands for module number, “n” stands for total number of modules, Nx, m 

stands for noise path collisions to segment x for module m, ACx stands for the accumulated collisions 

for segment x, and SCx stands for the final collision score for segment x.  

𝑆𝐶𝑥 =
(𝐴𝐶𝑥)

𝑀𝑎𝑥 (𝐴𝐶𝑥)
=

(∑ 𝑁𝑥,𝑚
𝑛

𝑚=1
)

𝑀𝑎𝑥 (𝐴𝐶𝑥)
                                                                                                                          (6) 

3.2.3 Vertical Access and Integration 

The third factor of the fitness function is vertical access and integration, contributing to accessibility 

of this building, especially in emergent situations. In every generative design solution, it is vital for the 

computer-generated results to satisfy the construction requirements of a real-world building, which is 

much more than a 3D configuration only exists in the digital world. The significance originates from 

the fact that feasibility and constructability of the final output must be under consideration. The first 

aspect evaluated in this part of the fitness function is face connection for the modules. This aspect 

facilitates the goal of creating an integrated and accessible architectural form. To quantify this aspect, 

all six faces for every module are evaluated during each iteration in terms of collisions with adjacent 

modules (see Figure 6). 

 

Figure 6: Calculating face connections score 

This evaluation produces an integer for each module called “Connections module”, with a maximum of 

six and a minimum of zero.  To map the result into the range between 0 and 1, a value representing the 

total number of connections for all modules is created as “Accumulated Connections”. By dividing the 

Accumulated Connections with its maximum value when every module has connections on all six faces, 

the final score for this aspect is generated. The process is demonstrated in equations (7) where “AC” 

stands for “Accumulated Connections for all modules”, “C” stands for “Connections”, “m” for “Module 

number”, “n” for “Total number of modules” and “SAC” is equivalent to final score for face-connection 

aspect. 

 

AC = ( ∑ 𝐶𝑚

𝑛

𝑚=1

)，  𝑆𝐴𝐶 = ൬
𝐴𝐶

𝑛 × 6
൰                                                                                                                                   (7)  

Connections = 1 Connections = 2 Connections = 4 Connections = 5 Connections = 3 Connections = 6 
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For the second aspect of vertical access and integration, distance between modules is aimed to be 

minimized. To achieve this goal, distances between modules centers are calculated. For every iteration, 

the total amount of the center distances is stored in a variable called “Relative Distance module”. In an 

approach similar with previous aspects, another cumulative variable named “Accumulated Relative 

Distance” is then created to store the total Relative Distance for all modules (See Figure 7). To determine 

the final score within the desired range from 0 to 1, Accumulated Relative Distance is divided by its 

maximum value. The longest relative distance is between the centers of two corner modules (see Figure 

7). Consequently, the maximum value of the relative distance for each module is equal to the product 

of “longest possible distance” and “total number of modules - 1.” The normalization process is similar 

to the previous sections. The process is demonstrated in equations (8) where “AR” stands for 

“Accumulated Relative distance”, “Rh, m” stands for “Relative distance”, “m” for “Module number”, “n” 

for “Total number of modules”, and “SAC” for final module distance score. 

 

Figure 7: Exploded diagram demonstrating calculation of relative and accumulated distance for an 

example module (White Cube) in a 20-module configuration. 

𝐴𝑅 = ∑  

𝑛

ℎ=1

∑ 𝑅ℎ,𝑚

𝑛

𝑚=1

,   𝑆𝐴𝑅 = ൬
𝐴𝑅

𝑑 × (𝑛 × (𝑛 − 1))
൰                                                                                                (8) 

In the third aspect of vertical access and integration, the requirements for emergency evacuation are 

mentioned. Considering the local regulations in terms of maximum capacity for fire and safety 

evacuation in an educational complex, this building should contain a minimum of four vertical access 

towers. Additionally, the longest path to the evacuation point shall not exceed 30 meters or 100 feet. In 

the algorithm, two different methods are used to determine whether these requirements are satisfied. 

The first method to test vertical access is counting collisions. Based on the height of the module, the 

prospective level at which the module is going to be placed will be determined. This means that at least 

for four modules on the third level, the number of collisions for this line (See the orange line in Figure 

8) with other modules should be equal to 3. To quantify this process, the number of collisions for the 

vertical lines connecting every module to the ground with other modules is stored in a variable named 

“Vertical Access Collisions module”. Only the modules placed on the 3rd level, the highest level, are 

analyzed concerning this variable. Throughout the iteration process, if the height of the module center 

points is bigger than the altitude of level 3 while “Vertical Access Collisions module” of that module is 

equal to 4, the number of Vertical Access Towers (VAT) increase 1. A Boolean variable is employed to 

test if VAT equals to 4 for normalization. 
 

 

 

Figure 8: Testing vertical access by collision and identifying evacuation path 

÷ × 19 

Config. A 3rd level module 

Orange line: 3 Collisions 

Green line = Orange line 

× Config. B 3rd level module 

Orange line: 2 Collisions 
Green line ≠ Orange line 
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Finally, the last aspect is minimizing the evacuation path distance for each vertical access tower. This 

aspect also utilizes the vertical access lines created by the previous aspect as an input. Using the lines 

with three collisions, the algorithm adds another segment from the touching point of the input lines on 

the ground to their respective closest point on the side streets (See the green lines in Figure 8). In the 

next step the algorithm converts the minimization to maximization by calculating the distance for the 

starting points of each one of these segments to the starting points of other segments respectively, 

accumulating the results in a variable named “Accumulated Exit Point Distance”. To prevent errors 

caused by calculating these numbers for arrangements with less than four access towers, this process 

also multiplies its result with a Boolean operator resulting in 0 for any solutions with less or more than 

4 access towers. Divide the “Accumulated Evac Point Distance” with its maximum and assign the 

respective weights, the score of the final aspect of the fitness function could be generated. The process 

is demonstrated in equations (9) where “AE” stands for “Accumulated Evacuation point distance”, 

“d(Vy,x)” stands for “projected distance on the ground”, “x” and “y” for “vertical access tower number”, 

“h” for “Total number of vertical access towers”, and “SAR” for final evacuation point distance score. 

𝐴𝐸 = ∑  

ℎ

𝑦=1

∑ 𝑑(𝑉𝑦,𝑥)

ℎ

𝑥=1

,   𝑆𝐴𝑅 = ൬
𝐴𝐸

ℎ × (𝑙 + 𝑤 + 𝑜)
൰                                                                                                     (9) 

3.3 Simulation 

The final design includes 45 modules in 4 levels with each module holding 2 levels. After combining 

different aspects of the fitness function using weighted average method and running Galapagos with 

simulated annealing for 30 minutes, a score of 66.25% is generated. As demonstrated in Figure 9, the 

selected design is reflecting the design requirements by maintaining distance with the main street, 

optimizing the sunlight exposure using voids and creating a unified building with four properly 

distributed vertical access towers. 

 

 

Figure 9: Simulation results in grasshopper - 3d section of detailed design output 

3.4 Detailed Design 

For visualizing research results and creating architectural documentation, Building Information 

Modeling (BIM) tools are utilized to transform the digital optimization results into tangible architectural 

elements (see Figure 10).  

 

 

Figure 10: Detailed design of the educational complex 
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4. CONCLUSION 

This research demonstrates a unique approach to generative design for modular construction by 

creating an optimized educational environment while considering the variable characteristics of 

different construction projects and facilitating the process of decision making for the designer. The 

provided methodology in the section 3 can be modified and tailored to the needs of other projects with 

different capacities. This approach provides quantitative reports, clearly demonstrating the 

improvements in several aspects of the desired fitness function and design preferences while further 

optimizing several factors including thermal and acoustic comfort of the design during every iteration 

of the simulation. In comparison with the conventional approach, if properly utilized, this method can 

aid designers with a generative optimization tool capable of satisfying various regulations and design 

requirements of different clients and preferences rapidly and effectively. This method can facilitate 

design changes and provide the flexibility necessary for modular construction, ultimately providing a 

solution for the exponential growth of worldwide demands on sustainable and affordable housing for 

the future. Considering the diversity of requirements for different construction projects, the applications 

of the simulation can be improved by adding new factors to the fitness function in the future. The 

capacity of the hardware conducting the simulation is another limiting factor. New and more powerful 

devices may be capable of conducting more complex calculations with embedded fluid dynamic 

simulations. This process can also be replicated in other local contexts with different regulations and 

requirements to improve the generalizability of findings. 
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