DOI QR코드

DOI QR Code

A Review of BIM-Enabled Daylighting Control System for Office Buildings

  • Qinghao ZENG (School of Building Construction, Georgia Institute of Technology) ;
  • Tarek RAKHA (School of Architecture, Georgia Institute of Technology) ;
  • Pardis PISHDAD (School of Building Construction, Georgia Institute of Technology)
  • Published : 2024.07.29

Abstract

Despite the acknowledged benefits by incorporating daylighting in the lighting system of office buildings to enhance energy efficiency and ensure occupants' well-being, a significant gap in understanding the integration of daylighting control system (DCS) with Building Information Modeling (BIM) exists, which can lead to improved energy efficiency and enhanced building design, specifically regarding the impact of daylight on occupant comfort. Previous studies have highlighted the potential of BIM to revolutionize both architectural design and building performance. However, an untapped potential of BIM in facilitating daylighting control in office areas is yet to be explored. The significance of this study lies in prioritizing occupants' well-being and enhancing building performance. This research identifies the feasibility of BIM-enabled DCS through a literature review from three perspectives: BIM-enabled DCS and daylight strategies, BIM-assisted façade system improvement, and user-centric daylight utilization within BIM platforms. As for results, a sensor network diagram illustrating network structure, data flow, and connections between devices of BIM enabled daylight control system for office buildings are established. Additionally, a BIM assisted daylight control strategy diagram is presented to outline user-centric control facilitated by BIM platform. In terms of contribution to the body of knowledge, this research will provide a comprehensive synthesis of existing literature in this domain. Additionally, this research could provide architects, DCS designers, and sustainable building professionals with potential advancements and inspirations to promote energy-efficient and user-centric building design in the future.

Keywords

References

  1. M. Krarti, Energy Audit of Building Systems: An Engineering Approach, Third Edition. CRC Press, 2020.
  2. R. Delvaeye, W. Ryckaert, L. Stroobant, P. Hanselaer, R. Klein, and H. Breesch, "Analysis of energy savings of three daylight control systems in a school building by means of monitoring," Energy Build., vol. 127, pp. 969-979, Sep. 2016, doi: 10.1016/j.enbuild.2016.06.033.
  3. M. R. Atif and A. D. Galasiu, "Energy performance of daylight-linked automatic lighting control systems in large atrium spaces: report on two field-monitored case studies," Energy Build., vol. 35, no. 5, pp. 441-461, Jun. 2003, doi: 10.1016/S0378-7788(02)00142-1.
  4. J. D. Jennings, F. M. Rubinstein, D. DiBartolomeo, and S. L. Blanc, "Comparison of Control Options in Private Offices in an Advanced Lighting Controls Testbed," J. Illum. Eng. Soc., vol. 29, no. 2, pp. 39-60, Jul. 2000, doi: 10.1080/00994480.2000.10748316.
  5. G. Y. Yun, H. Kim, and J. T. Kim, "Effects of occupancy and lighting use patterns on lighting energy consumption," Energy Build., vol. 46, pp. 152-158, Mar. 2012, doi: 10.1016/j.enbuild.2011.10.034.
  6. S. Azhar, M. Khalfan, and T. Maqsood, "Building Information Modeling (BIM): Now and beyond," Australas. J. Constr. Econ. Build., vol. 12, no. 4, pp. 15-28, Aug. 2020, doi: 10.3316/informit.013120167780649.
  7. J. C. P. Cheng, W. Chen, K. Chen, and Q. Wang, "Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms," Autom. Constr., vol. 112, p. 103087, Apr. 2020, doi: 10.1016/j.autcon.2020.103087.
  8. M. E. Mathews, A. E. Shaji, N. Anand, A. D. Andrushia, S. C. Chin, and E. Lubloy, "Chapter 4 - IoT-based BIM integrated model for energy and water management in smart homes," in Intelligent Edge Computing for Cyber Physical Applications, D. J. Hemanth, B. B. Gupta, M. Elhoseny, and S. V. Shinde, Eds., in Intelligent Data-Centric Systems. , Academic Press, 2023, pp. 45-66. doi: 10.1016/B978-0-323-99412-5.00009-5.
  9. P. Mongeon and A. Paul-Hus, "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, vol. 106, no. 1, pp. 213-228, Jan. 2016, doi: 10.1007/s11192-015-1765-5.
  10. G. S. Odiyur Vathanam et al., "A Review on Effective Use of Daylight Harvesting Using Intelligent Lighting Control Systems for Sustainable Office Buildings in India," Sustainability, vol. 13, no. 9, Art. no. 9, Jan. 2021, doi: 10.3390/su13094973.
  11. I. Turan, A. Chegut, D. Fink, and C. Reinhart, "The value of daylight in office spaces," Build. Environ., vol. 168, p. 106503, Jan. 2020, doi: 10.1016/j.buildenv.2019.106503.
  12. Y. Han, L. Shen, and C. Sun, "Developing a parametric morphable annual daylight prediction model with improved generalization capability for the early stages of office building design," Build. Environ., vol. 200, p. 107932, Aug. 2021, doi: 10.1016/j.buildenv.2021.107932.
  13. N.-T. Ngo, N. D. K. Lam, B. M. Hieu, N. T. T. Hang, T. T. Ha, and P. T. H. Thoa, "BIM application for analyzing impacts of construction parameters on energy use and energy costs in buildings," J. Sci. Technol. Civ. Eng. JSTCE - HUCE, vol. 15, no. 3, Art. no. 3, Aug. 2021, doi: 10.31814/stce.nuce2021-15(3)-12.
  14. D. Plorer, S. Hammes, M. Hauer, V. van Karsbergen, and R. Pfluger, "Control Strategies for Daylight and Artificial Lighting in Office Buildings-A Bibliometrically Assisted Review," Energies, vol. 14, no. 13, Art. no. 13, Jan. 2021, doi: 10.3390/en14133852.
  15. A. Nabil and J. Mardaljevic, "Useful daylight illuminances: A replacement for daylight factors," Energy Build., vol. 38, no. 7, pp. 905-913, Jul. 2006, doi: 10.1016/j.enbuild.2006.03.013.
  16. P. Jayathissa, S. Caranovic, J. Hofer, Z. Nagy, and A. Schlueter, "Performative design environment for kinetic photovoltaic architecture," Autom. Constr., vol. 93, pp. 339-347, Sep. 2018, doi: 10.1016/j.autcon.2018.05.013.
  17. Y. K. Yi, "Building facade multi-objective optimization for daylight and aesthetical perception," Build. Environ., vol. 156, pp. 178-190, Jun. 2019, doi: 10.1016/j.buildenv.2019.04.002.
  18. R. M. ElBatran and W. S. E. Ismaeel, "Applying a parametric design approach for optimizing daylighting and visual comfort in office buildings," Ain Shams Eng. J., vol. 12, no. 3, pp. 3275-3284, Sep. 2021, doi: 10.1016/j.asej.2021.02.014.
  19. Y.-W. Lim, M. Z. Kandar, M. H. Ahmad, D. R. Ossen, and A. M. Abdullah, "Building facade design for daylighting quality in typical government office building," Build. Environ., vol. 57, pp. 194-204, Nov. 2012, doi: 10.1016/j.buildenv.2012.04.015.
  20. M. Konstantoglou and A. Tsangrassoulis, "Dynamic operation of daylighting and shading systems: A literature review," Renew. Sustain. Energy Rev., vol. 60, pp. 268-283, Jul. 2016, doi: 10.1016/j.rser.2015.12.246.
  21. Y. Song et al., "Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective," ISPRS Int. J. Geo-Inf., vol. 6, no. 12, Art. no. 12, Dec. 2017, doi: 10.3390/ijgi6120397.
  22. J. K. Day et al., "Blinded by the light: Occupant perceptions and visual comfort assessments of three dynamic daylight control systems and shading strategies," Build. Environ., vol. 154, pp. 107-121, May 2019, doi: 10.1016/j.buildenv.2019.02.037.
  23. B. W. Meerbeek, C. de Bakker, Y. A. W. de Kort, E. J. van Loenen, and T. Bergman, "Automated blinds with light feedback to increase occupant satisfaction and energy saving," Build. Environ., vol. 103, pp. 70-85, Jul. 2016, doi: 10.1016/j.buildenv.2016.04.002.
  24. A. Tabadkani, A. Roetzel, H. X. Li, and A. Tsangrassoulis, "A review of occupant-centric control strategies for adaptive facades," Autom. Constr., vol. 122, p. 103464, Feb. 2021, doi: 10.1016/j.autcon.2020.103464.
  25. N. K. Kandasamy, G. Karunagaran, C. Spanos, K. J. Tseng, and B.-H. Soong, "Smart lighting system using ANN-IMC for personalized lighting control and daylight harvesting," Build. Environ., vol. 139, pp. 170-180, Jul. 2018, doi: 10.1016/j.buildenv.2018.05.005.
  26. S. Yogi, "Use of BIM-Based Energy Simulations to Analyze the Impact of Occupant Behavior on Energy Performance of Commercial Buildings," M.S., Colorado State University, United States -- Colorado. Accessed: Sep. 18, 2023. [Online]. Available: https://www.proquest.com/docview/2016788663/abstract/BC0CCE8246684BE6PQ/1
  27. M. N. Uddin, H.-H. Wei, H. L. Chi, and M. Ni, "Influence of Occupant Behavior for Building Energy Conservation: A Systematic Review Study of Diverse Modeling and Simulation Approach," Buildings, vol. 11, no. 2, Art. no. 2, Feb. 2021, doi: 10.3390/buildings11020041.
  28. M. A. Campano, I. Acosta, S. Dominguez, and R. Lopez-Lovillo, "Dynamic analysis of office lighting smart controls management based on user requirements," Autom. Constr., vol. 133, p. 104021, Jan. 2022, doi: 10.1016/j.autcon.2021.104021.
  29. D. P. Marins, C. E. Alvarez, B. Piderit, and M. Segatto, "Below Useful Daylight Illuminance (BUDI): a new useful range measurement parameter," in 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC), Oct. 2019, pp. 1-5. doi: 10.1109/SBFotonIOPC.2019.8910193.
  30. G.-H. Lim, M. B. Hirning, N. Keumala, and N. Ab. Ghafar, "Daylight performance and users' visual appraisal for green building offices in Malaysia," Energy Build., vol. 141, pp. 175-185, Apr. 2017, doi: 10.1016/j.enbuild.2017.02.028.
  31. F. Rodriguez, V. Garcia-Hansen, A. Allan, and G. Isoardi, "Subjective responses toward daylight changes in window views: Assessing dynamic environmental attributes in an immersive experiment," Build. Environ., vol. 195, p. 107720, May 2021, doi: 10.1016/j.buildenv.2021.107720.
  32. T.-C. Kuo, Y.-C. Chan, and A. Y. Chen, "An Occupant-Centered Integrated Lighting and Shading Control for Energy Saving and Individual Preferences," in COMPUTING IN CIVIL ENGINEERING 2017: SMART SAFETY, SUSTAINABILITY, AND RESILIENCE, K. Y. Lin, N. ElGohary, and P. Tang, Eds., New York: Amer Soc Civil Engineers, 2017, pp. 207-214. Accessed: Oct. 25, 2023. [Online]. Available: https://www.webofscience.com/wos/woscc/fullrecord/WOS:000426216800026
  33. S. Hammes, J. Weninger, M. Canazei, R. Pfluger, and W. Pohl, "Die Bedeutung von Nutzerzentrierung in automatisierten Beleuchtungssystemen," Bauphysik, vol. 42, no. 5, pp. 209-217, 2020, doi: 10.1002/bapi.202000010.
  34. A. Das and S. K. Paul, "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Appl. Energy, vol. 158, pp. 65-85, Nov. 2015, doi: 10.1016/j.apenergy.2015.08.006.
  35. A. Kangazian and S. Z. Emadian Razavi, "Multi-criteria evaluation of daylight control systems of office buildings considering daylighting, glare and energy consumption," Sol. Energy, vol. 263, p. 111928, Oct. 2023, doi: 10.1016/j.solener.2023.111928.
  36. L. Chhaya, P. Sharma, G. Bhagwatikar, and A. Kumar, "Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control," Electronics, vol. 6, no. 1, Art. no. 1, Mar. 2017, doi: 10.3390/electronics6010005.
  37. S. Attia, "Challenges and Future Directions of Smart Sensing and Control Technology for Adaptive Facades Monitoring," presented at the COST Action TU1403 - Adaptive Facades Network Final Conference:, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland, Nov. 2018. Accessed: Oct. 25, 2023. [Online]. Available: https://orbi.uliege.be/handle/2268/229695