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Abstract: The task of vision safety monitoring in construction environments presents a formidable 

challenge, owing to the dynamic and heterogeneous nature of these settings. Despite the advancements 

in artificial intelligence, the nuanced analysis of small or tiny personal protective equipment (PPE) 

remains a complex endeavor. In response to this challenge, this paper introduces an innovative safety 

monitoring system, specifically designed to enhance the safety monitoring of working both at ground 

level and at elevated heights. This novel system integrates a suite of sophisticated technologies: instance 

segmentation, shape classification, object tracking, a visualization report, and a real-time notification 

module. Collectively, these components coalesce to deliver a safety monitoring solution, ensuring a 

higher standard of protection for construction workers. The experimental results….. 
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1. INTRODUCTION 

Vision safety monitoring represents a cutting-edge solution designed to mitigate accidents and 

fatalities on construction sites. Statistical evidence indicates that falls, slips, and trips are the second 

leading cause of fatalities in the construction industry [1]. Despite this, accurately identifying workers 

at heights, such as those on scaffolds or elevated areas, poses significant challenges. This difficulty 

arises primarily because personal protective equipment (PPE) like safety straps and hooks, essential for 

worker safety, are often hard to detect due to their small size and potential occlusion from view. Previous 

research has highlighted the promising capabilities of construction safety monitoring technologies 

[2,3,4,5,6]. 

For a safety monitoring system to be effective and deployable in real-world settings, it must 

comprise several components. This study introduces a comprehensive construction worker safety 

monitoring system that integrates three essential modules: recognition models, analytical algorithms, 

and notification & reporting mechanisms. The system employs a state-of-the-art speed-accuracy 

balanced YOLOv8 [7] instance segmentation model to accurately identify and delineate six specific 

categories: hardhats, straps, harnesses, hooks, height workers, and ground workers. This model 

facilitates the detailed analysis of each identified object. Additionally, an efficient vision transformer, 

FastViT [8] classification model, is utilized to ascertain whether safety straps are being used correctly. 

As detecting the existence of the PPE do not guarantee the proper usage, it is necessary to examine 

whether hardhats, harnesses, and straps are equipped and utilized. The analytical component of the 

system features the PPE Assignment & Connectivity Analysis [3] method. This method assigns detected 

PPE to the correct workers using bounding box data and verifies the proper equipment of PPE through 

segmentation mask information. Moreover, a specially customized multiple object tracking algorithm 
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for worker, hashing-supported cascaded buffered intersection over union (HC-BIoU) [9], is employed 

to improve worker identification and maintain a record of each worker’s safety history, which is crucial 

for ongoing safety assessments. The system's notification and reporting module is designed to alert site 

supervisors immediately via email notifications and generate PDF reports post-monitoring sessions for 

detailed reviews. 

To validate the accuracy and reliability of the instance segmentation and classification models, 

the training process incorporated images from the YUD-COSA-V2 [3] dataset and an additional 

collection of newly acquired images, totaling 9,847 and 1,658 images for training and validation without 

overlapping in construction scenes, respectively. The safety strap classification model was specifically 

trained on images categorized into 'used' and 'not used', to differentiate between the proper and improper 

use of safety straps. Training images and annotations for both the instance segmentation and 

classification models are shown in Fig. 1. Furthermore, to examine the system's overall effectiveness 

for safety assessment, two new clips were annotated to identify workers as safe or unsafe, with the first 

clip sampled at 10 frames per second (FPS) over 1,200 frames, the second clip sampled at 8 frames per 

second (FPS) over 1,000 frames, as demonstrated in Fig. 2. 

 

 
Figure 1. Visualization of annotations used for training instance segmentation and classification 

models. (1st & 2nd Rows) Polygon annotations of hardhat, strap, harness, hook, height worker (gray 

polygons), and ground worker (green polygons). (3rd Row) Strap “used” class instances. (4th Row) 

Strap “not-used” class instances. 
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Figure 2. Visualization of safety assessment testing images with bounding box annotations. Green 

boxes represent height-safe, red boxes represents heigh-unsafe, yellow boxes represent ground-unsafe, 

and blue boxes represents ground-safe. Some workers were annotated as occluded for being covered 

by other objects without proper vision to the workers. 

2. METHODOLOGY 

The proposed safety monitoring system is composed of several key components: a YOLOv8 

instance segmentation model [7], a FastViT strap classification model [8], a HC-BIoU worker tracker 

[9], and modules dedicated to alarm logging and notification, as illustrated in Figure 3. 

 

 
Figure 3. Visualization of the proposed monitoring system flowchart. 

 

To ensure the selection of the most effective recognition models for this system, a meticulous 

process was followed. For the instance segmentation, the YOLOv8-Medium model was trained using a 
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learning rate of 0.001, the AdamW optimizer, and an input resolution of 1280x720. This training phase 

also incorporated various image data augmentation techniques, such as horizontal flipping, color 

jittering, and Copy-Paste [10], to enhance the model's ability to generalize across different scenarios. 

Similarly, the FastViT strap classification model underwent training with a learning rate of 0.0001, the 

AdamW optimizer, and an input resolution of 224x224. The training was further supplemented with 

data augmentation techniques including horizontal flipping, rotation, color jittering, MixUp [11], and 

random erase [12] to improve its performance. 

Upon obtaining bounding boxes and segmentation masks for PPE and workers, the system 

employs PPE Assignment and Connectivity Analysis [3]. This analysis assigns PPE to workers based 

on a predefined formula, ensuring accurate tracking and safety compliance within the monitored 

environment. PPE Assignment is formulated as follow: 

 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑝𝑖 ,  𝑤𝑗) =
𝐼(𝑝𝑖, 𝑤𝑗)

𝐴(𝑝𝑖)
, (1) 

where the function 𝐼 represents the intersection between the bounding boxes of each detected PPE (𝑝𝑖) 

and worker (𝑤𝑗), the function 𝐴 represents the area of the PPE. Each PPE will be assigned to a worker 

that shares the largest overlap with. Upon completing the initial assignment phase, the Connectivity 

Analysis process employs segmentation masks to meticulously evaluate each worker and their 

corresponding PPE, ensuring the correct usage. This involves linking the PPE to workers based on the 

detailed pixel-level masks provided by using the floodfill algorithm. The analysis then verifies the 

correct application of PPE for each worker, generating a relation vector for safety assessment in the 

current frame. This vector, equal in length to the number of target classes, uses boolean values to 

represent PPE usage status: '1' indicates proper use, while '0' signifies non-compliance. 

Prior to determining the safety status of workers in the current frame, it is also imperative to 

conduct a thorough examination of the workers' safety straps through the strap classification model 

besides Connectivity Analysis. To achieve a more accurate classification, the bounding boxes around 

the straps are enlarged to encompass additional contextual information, aiding in the assessment of the 

strap's shape and its correct usage. This study noticed two primary configurations of safety straps: 'U' 

shapes and stretched formations. However, as depicted in Figure 4, the presence of a 'U' shape does not 

unequivocally indicate correct usage. Workers may, for convenience, attach one end of the strap to the 

safety harness at the back and the other to the chest area, a practice that does not follow the safety 

guideline. Given these challenges and the dynamic nature of worker movements, a specialized strap 

classification model has been trained by the diverse dataset to accurately assess the correct usage of 

safety straps, accounting for the nuances of various attachment methods and strap configurations.  

 
Figure 4. Example of U- and stretched shapes of safety straps. Green circles represents the strap in 

active use, while red crosses suggest the otherwise. 

 

 To enhance the reliability of worker tracking in scenarios where the instance segmentation 

model may falter, the HC-BIoU [9], a worker-specific tracking algorithm, has been integrated. This 

algorithm employs a strategy of bounding box matching for multiple object tracking, augmented by a 

color hashing technique for re-identification purposes. This feature is crucial for determining whether a 
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new worker instance has been previously identified or is yet to be recognized. Furthermore, the HC-

BIoU tracker has been refined to monitor both the historical and current safety statuses of workers, 

thereby facilitating real-time assessments of their safety conditions. Figure 5 demonstrates the 

methodology employed by the monitoring system to ascertain a worker's safety status, utilizing a safety 

history vector with a depth of five as an example. By calculating the mode of this vector, the system can 

accurately gauge the worker's safety status, which is particularly beneficial in the complex environment 

of a construction site. This approach aids in minimizing the incidence of false alarms and noise in safety 

alerts, which can arise from the inherent challenges associated with classifying the correct use of safety 

straps, as highlighted in Figure 4. 

 
Figure 5. Visualization of worker safety histories tracking within the worker tracker.  

The system's reporting and notification module is designed to visually delineate safe and unsafe 

workers through the application of bounding boxes and masks. These visualized images are then 

compiled into a PDF report. Additionally, an email notification, featuring the visualized image, is 

dispatched to designated recipients as shown in Figure 6. This integrated approach ensures that relevant 

supervisors are promptly informed about the safety status of workers, enabling timely interventions 

when necessary. 

 

 
Figure 6. Visualization of PDF report (left) and E-Mail notification (right) for reviews and real-time 

alarming to site supervisors. 

3. EXPERIMENTAL RESULTS 

In assessing the performance of the YOLOv8-Medium instance segmentation model, it 

is noted that the model achieved mean average precision (mAP) scores of 72.0% and 65.5% for 

detection and segmentation, respectively, on the validation set as shown in Fig. 7. The 

performance for the FastViT strap classification model on the validation set are 82.32% and 

79.20% in accuracy and F1 score, respectively. 

The efficacy of the proposed context- and shape-aware safety monitoring system was 

evaluated through its safety assessment capabilities in the two testing scenes. Specifically, the 

system demonstrated an accuracy of 78.12% and an F1 score of 72.72% when analyzing the 

safety conditions of workers recognized in scene #1. In scene #2, the system showed enhanced 

performance, achieving an accuracy of 80.69% and an F1 score of 79.59%, as presented in 

Table 2. Collectively, the system's performance across the two testing scenes resulted in an 

average accuracy of 79.41% and an F1 score of 76.16%. Visualization of the safety monitoring 

results on the two testing scenes are shown in Fig. 8.  
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Figure 7. YOLOv8’s mean average precision (mAP) curves for detection (left) and segmentation 

(right). 

 

Table 1. Accuracy, and F1 score of the strap classification. 

 Accuracy F1 

Scores 82.32% 79.20% 

 

Table 2. Accuracy, and F1 score of the proposed monitoring system to the testing scenes. 

 Scene #1  Scene #2 

Accuracy 78.12% 80.69% 

F1 Score 72.72% 79.59% 

Avg. Accuracy 79.41% 

Avg. F1 76.16% 

 

 
Figure 8. Visualization of safety monitoring results. The proposed system draw red bounding boxes 

around unsafe workers, green bounding boxes on safe workers, yellow bounding boxes indicates 
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recognized PPE. First and second column of the texts above the bounding boxes indicates ground 

truth, and predicted annotation respectively. 

4. CONCLUSION 

 This research focuses on enhancing construction safety monitoring with an emphasis on fall 

protection by evaluating the proper usage of safety straps. It introduces a sophisticated monitoring 

system illustrated in Figure 3, which integrates recognition models, analytical algorithms, and a 

comprehensive notification and reporting framework. The experimental outcomes indicate an overall 

accuracy of 79.41%, and F1 score of 76.16%. Figures 1 and 4 demonstrate the challenge in the system's 

ability to consistently recognize the smaller PPE and classify the correct deployment of safety straps. 

The accuracy of strap classification is impeded by various challenges, such as adverse lighting 

conditions, the small size of straps, or occlusion caused by occlusion placement and interference from 

other construction materials. 

To improve the recognition models within the monitoring framework, future research will 

explore the application of stable diffusion models [13,14], to augment the current dataset. This 

enhancement aims to refine the training performance by augmenting existing data in a realistic matter. 

The deployment of diffusion models could facilitate a range of applications, from text-to-image to 

image-to-video transformations, thereby improving the models' ability to generalize or achieve zero-

shot inference across new and diverse construction environments. Moreover, the integration of 

Contrastive Language-Image Pre-Training (CLIP) [15] into the system promises to enhance zero-shot 

learning capabilities in classification tasks by leveraging textual data within the model architecture. By 

including the dataset expansion capabilities of stable diffusion models with the advanced classification 

potential of the CLIP framework, there is a significant opportunity to boost the efficacy and reliability 

of instance segmentation and classification models. This improvement is pivotal for developing a more 

robust and effective safety monitoring system for construction workers, ensuring higher safety standards 

and reducing the risk of accidents on construction sites. 
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