References
- Abioye, S., Oyedele, L. O., Akanbi, L., Ajayi, A. O., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities, and future challenges. Journal of Building Engineering, 44, 103299. https://doi.org/10.1016/j.jobe.2021.103299
- Ajayi, A. O., Oyedele, L. O., Delgado, J. M. D., Akanbi, L., Bilal, M., Akinade, O. O., & Olawale, O. (2019). Big data platform for health and safety accident prediction. World Journal of Science, Technology and Sustainable Development, 16(1), 2-21. https://doi.org/10.1108/wjstsd-05-2018-0042
- Arditi, D., & Pulket, T. (2009). Predicting the outcome of construction litigation using an integrated artificial intelligence model. Journal of Computing in Civil Engineering, 24(1), 73-80.
- Ayodele, T. O., & Kajimo-Shakantu, K. (2021). The fourth industrial revolution (4thIR) and the construction industry - the role of data sharing and assemblage. IOP Conference Series: Earth and Environmental Science, 654(1), 012013. https://doi.org/10.1088/1755-1315/654/1/012013
- Baduge, S. K., Thilakarathna, S., Perera, J. M., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440
- Bello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M., Akanbi, L., & Ajayi, A. O. (2021). Cloud computing in the construction industry: Use cases, benefits, and challenges. Automation in Construction, 122, 103441. https://doi.org/10.1016/j.autcon.2020.103441
- Bigham, G. F., Adamtey, S., Onsarigo, L., & Jha, N. (2019). Artificial intelligence for construction safety: Mitigation of the risk of fall. In Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2 (pp. 1024-1037). Springer International Publishing.
- Blanco, J. L., Fuchs, S., Parsons, M., & Ribeirinho, M. J. (2018, April 4). Artificial intelligence: Construction technology's next frontier. McKinsey & Company. https://www.mckinsey.com/capabilities/operations/our-insights/artificial-intelligence-construction-technologys-next-frontier#/
- Blanco, J.L., Mullin, A., Pandya, K., Sridhar, M., 2017. The New Age of Engineering and Construction Technology. McKinsey & Company, Philadelphia, PA.
- Bloch, T., & Sacks, R. (2018). Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models. Automation in Construction, 91, 256-272. https://doi.org/10.1016/j.autcon.2018.03.018
- Bolpagni, M., Gavina, R., & Ribeiro, D. (Eds.). (2021). Industry 4.0 for the Built Environment: Methodologies, Technologies, and Skills (Vol. 20). Springer Nature.
- Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlstrom, P., Henke, N., & Trench, M. (2017). How artificial intelligence can deliver real value to companies. In McKinsey & Company. https://www.mckinsey.com/capabilities/quantumblack/our-insights/how-artificial-intelligence-can-deliver-real-value-to-companies
- Chakkravarthy, R. (2019). ARTIFICIAL INTELLIGENCE for Construction Safety. Professional Safety, 64(1), 46. https://login.hmlproxy.lib.csufresno.edu/login?url=https://www-proquest-com.hmlproxy.lib.csufresno.edu/scholarly-journals/artificial-intelligence-constructionsafety/docview/2165604383/se-2
- Chien, C., Dauzere-Peres, S., Huh, W. T., Jang, Y. J., & Morrison, J. R. (2020). Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and case studies. International Journal of Production Research, 58(9), 2730 - 2731. https://doi.org/10.1080/00207543.2020.1752488
- Chou, J. S., & Lin, C. (2012). Predicting disputes in public-private partnership projects: Classification and ensemble models. Journal of Computing in Civil Engineering, 27(1), 51-60.
- Chou, J. S., Tsai, C. F., & Lu, Y. H. (2013). Project dispute prediction by hybrid machine learning techniques. Journal of Civil Engineering and Management, 19(4), 505-517.
- Chui, M. (2017). Artificial intelligence the next digital frontier. McKinsey and Company Global Institute, 47(3.6).
- Collinge, W. H., Farghaly, K., Mosleh, M. H., Manu, P., Cheung, C., & Osorio-Sandoval, C. A. (2022). BIM-based construction safety risk library. Automation in Construction, 141, 104391. https://doi.org/10.1016/j.autcon.2022.104391
- Delgado, J. M. D. (2021). Digital Twins for the built environment: learning from conceptual and process models in manufacturing. Advanced Engineering Informatics, 49, 101332. https://doi.org/10.1016/j.aei.2021.101332
- Eber, W. (2020). Potentials of artificial intelligence in construction management. Organization, Technology and Management in Construction: An International Journal, 12(1), 2053-2063. https://doi.org/10.2478/otmcj-2020-0002
- Fargnoli, M., & Lombardi, M. (2020). Building Information Modelling (BIM) to Enhance Occupational Safety in Construction Activities: Research Trends Emerging from One Decade of Studies. Buildings, 10(6), 98. https://doi.org/10.3390/buildings10060098
- Gao, H., Koch, C., & Wu, Y. (2019). Building information modeling based building energy modeling: A review. Applied Energy, 238, 320-343. https://doi.org/10.1016/j.apenergy.2019.01.032
- Gbadamosi, A. Q., Mahamadu, A. M., Manu, P., Akinade, O., Sierra, F., Lam, T. T., & Alzaatreh, A. (2018, June). A BIM-based approach for optimization of construction and assembly through material selection. In Proceedings of the Creative Construction Conference.
- Ginzburg, A., Kuzina, O., & Ryzhkova, A. (2018). Unified resources marking system as a way to develop artificial intelligence in construction. IOP Conf. Ser. Mater. Sci. Eng. 365. https://doi.org/10.1088/1757-899X/365/6/062021.
- Golnaraghi, S., Zangenehmadar, Z., Moselhi, O., & Alkass, S. (2019). Application of Artificial Neural Network(s) in Predicting Formwork Labour Productivity. Advances in Civil Engineering, 2019, 1-11. https://doi.org/10.1155/2019/5972620
- Holzmann, V., & Lechiara, M. (2022). Artificial intelligence in construction Projects: An Explorative study of Professionals' expectations. European Journal of Business and Management Research, 7(3), 151-162. https://doi.org/10.24018/ejbmr.2022.7.3.1432
- Koskela, L., Ballard, G., & Howell, G. (2003, July). Achieving change in construction. In Proceedings of the International Group of Lean Construction 11th Annual Conference (IGLC-11) (Vol. 22, p. 24).
- Korke, P., Gobinath, R., Shewale, M., & Khartode, B. (2023). Role of artificial intelligence in construction project management. E3S Web of Conferences, 405, 04012. https://doi.org/10.1051/e3sconf/202340504012
- Kuenzel, R., Teizer, J., Mueller, M., & Blickle, A. (2016). SmartSite: Intelligent and autonomous environments, machinery, and processes to realize smart road construction projects. Automation in Construction, 71, 21-33.
- Li, R. Y. M. (2018). An Economic Analysis on Automated Construction Safety. In Springer eBooks. https://doi.org/10.1007/978-981-10-5771-7
- Lien, L. C., & Cheng, M. Y. (2014). Particle bee algorithm for tower crane layout with material quantity supply and demand optimization. Automation in Construction, 45, 25-32.
- Lin, Z., Chen, A. Y., & Hsieh, S. (2021). Temporal image analytics for abnormal construction activity identification. Automation in Construction, 124, 103572. https://doi.org/10.1016/j.autcon.2021.103572
- Martinez-Rojas, M., Marin, N., & Miranda, M. a. V. (2016). An intelligent system for the acquisition and management of information from bill of quantities in building projects. Expert Systems With Applications, 63, 284-294. https://doi.org/10.1016/j.eswa.2016.07.011
- Momade, M. H., Durdyev, S., Dixit, S., Shahid, S., & Alkali, A. K. (2022). Modeling labor costs using artificial intelligence tools. International Journal of Building Pathology and Adaptation. https://doi.org/10.1108/ijbpa-05-2022-0084
- Momade, M. H., Shahid, S., Falah, G., Syamsunur, D., & Estrella, D. (2021). Review of construction labor productivity factors from a geographical standpoint. International Journal of Construction Management, 23(4), 697-707. https://doi.org/10.1080/15623599.2021.1917285
- Mostafa, A.L., Mohamed, M.A., Ahmed,S., & Youssef, W.M. (2023). Application of Artificial Intelligence Tools with BIM Technology in Construction Management: Literature Review. Journal of International Journal of BIM and Engineering Science, 6 ( 2 ), 39-54 (Doi: https://doi.org/10.54216/IJBES.060203)
- Nagendra, S. V., & Rafi, N. (2018). Application of Artificial Intelligence in Construction Project Management. International Journal of Research in Engineering, Science and Management. https://www.ijresm.com/Vol_1_2018/Vol1_Iss12_December18/IJRESM_V1_I12_99.pdf
- Nikas, A., Poulymenakou, A., & Kriaris, P. (2007). Investigating antecedents and drivers affecting the adoption of collaboration technologies in the construction industry. Automation in Construction, 16(5), 632-641. https://doi.org/10.1016/j.autcon.2006.10.003
- Oprach, S., Bolduan, T., Steuer, D., Vossing, M., & Haghsheno, S. (2019). Building the Future of the Construction Industry through Artificial Intelligence and Platform Thinking. Digitale Welt, 3(4), 40-44. https://doi.org/10.1007/s42354-019-0211-x
- Pan, Y., & Zhang, L. (2021). Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Automation in Construction, 122, 103517. https://doi.org/10.1016/j.autcon.2020.103517
- Patil, G. (2019). Applications of artificial intelligence in construction management. International Journal of Research in Engineering, 32(03), 32-1541.
- Patricio, D., & Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture, 153, 69-81. https://doi.org/10.1016/j.compag.2018.08.001
- Rane, N. (2023) Integrating Building Information Modelling (BIM) and Artificial Intelligence (AI) for Smart Construction Schedule, Cost, Quality, and Safety Management: Challenges and Opportunities. http://dx.doi.org/10.2139/ssrn.4616055
- Regona, M., Yigitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Opportunities and adoption Challenges of AI in the construction industry: A PRISMA review. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 45. https://doi.org/10.3390/joitmc8010045
- Soltani, M. M., Motamedi, A., & Hammad, A. (2015). Enhancing Cluster-based RFID Tag Localization using artificial neural networks and virtual reference tags. Automation in Construction, 54, 93-105.
- Sota, L. O. (2021). APPLICATION OF ARTIFICIAL INTELLIGENCE FOR CONSTRUCTION PROJECT PLANNING. Coventry. https://www.academia.edu/44922975/APPLICATION_OF_ARTIFICIAL_INTELLIGENCE_FOR_CONSTRUCTION_PROJECT_PLANNING
- Tender, M., Couto, J. P., & Fuller, P. (2021). Improving occupational health and safety data integration using building information modelling. In Studies in systems, decision and control (pp. 75-84). https://doi.org/10.1007/978-3-030-89617-1_7
- To, T. H. Q. (2021). Applying BIM and related technologies for maintenance and quality management of construction assets in Vietnam. https://publisher.uthm.edu.my/ojs/index.php/IJSCET/article/view/10497
- Victor, N. O. C. (2023). The application of artificial intelligence for construction project planning. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-2801695/v1
- Xiao, C., Liu, Y., & Akhnoukh, A. (2018). Bibliometric review of artificial intelligence (AI) in construction engineering and management. ICCREM 2018. https://doi.org/10.1061/9780784481721.004
- Xu, J., & Li, Z. (2012). Multi-objective dynamic construction site layout planning in fuzzy random environment. Automation in Construction, 27, 155-169.
- Yahya, M., & Saka, M. P. (2014). Construction site layout planning using multi-objective artificial bee colony algorithm with Levy flights. Automation in construction, 38, 14-29.
- Young, D., Panthi, K., & Noor, O. (2021). Challenges involved in adopting BIM on the construction job site. EPiC Series in Built Environment. https://doi.org/10.29007/f8r3
- Zeng, Z., Xu, J., Wu, S., & Shen, M. (2014). Antithetic method -based particle swarm optimization for a queuing network problem with fuzzy data in concrete transportation systems. Computer-Aided Civil and Infrastructure Engineering, 29(10), 771-800.
- Zhang, L., Pan, Y., Wu, X., & Skibniewski, M. J. (2021). Artificial intelligence in construction engineering and management. In Lecture notes in civil engineering. https://doi.org/10.1007/978-981-16-2842-9
- Zhong, R.Y., Xu, X., Klotz, E., & Newman, S.T. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 3. https://doi.org/10.1016/J.ENG.2017.05.015.