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Abstract: The significance of welding quality cannot be overstated in ensuring the structural integrity 

of steel constructions. However, welding operations are inherently intricate, influenced by numerous 

variables. This paper introduces a novel welding digital twin framework grounded in a dynamic 

knowledge base. This framework serves to visualize the welding procedures and forecast optimal 

welding parameters. Such insights facilitate informed decision-making by operators, thereby enhancing 

both the quality and efficiency of welding processes. Furthermore, the study employs the welding of H-

beam steel as an example, wherein a digital twin welding model is established, based on which the 

overall welding quality can be improved. 
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1. INTRODUCTION 

Steel structural construction is a popular industrialized construction method employed worldwide. 

This method predominantly incorporates steel beams, columns, trusses, and various other components 

fabricated from steel sections and plates. Unlike traditional concrete construction, steel structural 

construction replaces reinforced concrete with steel components known for their exceptional strength 

and resistance to earthquakes [1]. Moreover, steel structural construction presents apparent advantages, 

including architectural design flexibility, simplified connectivity, and reduced construction waste 

generation [2]. Consequently, steel structural construction finds applications in commercial buildings, 

warehouses, bridges, and industrial facilities.  

Welding represents a pivotal joining technique in steel structural construction, which offers flexibility 

to meet specific architectural or engineering requirements [3]. Welded joints demonstrate the ability to 

withstand significant loads and stresses, thereby ensuring the robustness of steel structural components. 

Welding different steel components requires adherence to specific criteria such as current, welding 

speed, arc length, and torch orientation, all within dynamically changing work environments [4]. It is 

crucial to recognize that the quality of welding directly impacts the overall structural integrity of the 

entire building. Consequently, continuous monitoring and precise adjustment of operating parameters 

are essential for both manual welding and welding robots [5]. However, existing methods rely on direct 

observations and limited sensing devices, which do not provide an intuitive understanding or dynamic 

control of the welding status.  

Numerous digitalized solutions have emerged to enhance the production process of steel structural 

construction [6]. Among these solutions, digital twin (DT) has gained considerable attention and 
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practical implementation due to its unique attributes of virtual-real integration and real-time interaction. 

A DT model refers to a digital replica of physical products, assets, processes, and systems, which serves 

to describe and model the corresponding physical counterpart in a digital format [7]. In construction, 

DT integrates data from various sources, including Building Information Modeling (BIM) and Internet 

of Things (IoT) devices, to generate a precise and dynamic representation of the entire project or specific 

project elements throughout its entire life cycle [8]. However, when it comes to the application of DT 

in the welding of steel structural components, limited research endeavors have focused on leveraging 

DT's capabilities for analyzing, predicting, and optimizing welding processes and operations, creating a 

gap in this domain. 

Hence, this study seeks to propose a framework for a welding DT designed for steel structural 

construction. This framework extends the conventional DT paradigm, ensuring the appropriate 

configuration of welding parameters and enhancing the automation level in steel construction.  

2. THE PROPOSED FRAMEWORK 

Figure 1 presents the proposed framework of welding DT. Within this framework, the welding 

process for steel structures is orchestrated through a DT model, complemented by a dynamic knowledge 

base. This amalgamation of DT model and knowledge base (KB) enhances the production efficiency 

and provides real-time visual aids to refine the welding process. The framework delineates five key 

components: 

(1) The physical entity embodies the tangible welding production system comprising essential 

production equipment such as welding equipment, raw materials, worktables, sensors, and 

environmental conditions [9]. This entity encapsulates a plethora of dynamic and static data pivotal to 

the welding process of steel structures. 

(2) The virtual model leverages data gleaned from the physical layer to craft highly authentic 

simulation models [10]. I It entails the comprehensive modeling of the welding process for steel 

structures from a multi-physics and multi-scale perspective, encompassing component models, 

manufacturing process models, and attribute information. 

(3) Welding DT requires real-time sensing during actual welding operations, necessitating the 

collection of data from varied dimensions and perspectives. The collected data spans three primary 

categories: process data, material data, and equipment data. 

(4) The Knowledge Discovery in Database (KDD) layer serves as the linchpin of the entire 

framework, driving knowledge processing through the extraction, classification, and storage of collected 

data within a KB. Furthermore, it entails conducting similarity calculations between repository 

knowledge and input data from entity production, thereby furnishing matching parameters to the virtual 

model. Feedback loops enable the optimization of the KB through data from the virtual model.  

(5) The application layer encompasses modules such as the monitoring module, data processing 

module, and dynamic optimization module. Its primary functions entail monitoring welding quality, 

visualizing real-time sensing data, preprocessing process parameters, optimizing the welding process, 

and dynamically updating the knowledge base of DT. 
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Figure 1. Welding digital twin framework 

 

3. ENABLING TECHNIQUES 

3.1. Development of knowledge base 

The knowledge base is structured into three fundamental categories: meta knowledge, objective 

knowledge, and case-based knowledge. Meta knowledge is instantiated through meta-rules, constituting 

the Meta Knowledge Module. Objective knowledge manifests in diverse forms, including production 

rules and object-oriented representations, and is organized across the Fact Module, the Rule Module, 

the Model Module, and the Graphic Module. Case-based knowledge, represented through frame 

networks, shapes the Case Module.  

(1) Meta Knowledge Module: This module governs the reasoning process for specific objectives, 

including the determination of problem-solving sequences, problem decomposition methods, and 

candidate rule set selection. Meta-knowledge, reflecting logical knowledge relations, is formalized 

through production rules, mimicking the human reasoning processes [11]. 

(2) Fact Module: This module houses a substantial corpus of knowledge concerning process 

procedures and parameters. This knowledge is decomposed into individual ontologies, wherein each 

welding process ontology serves as a knowledge object, enabling an object-oriented knowledge 

representation approach. Semantic connections and constraint relationships among object classes 

organize knowledge objects into a coherent structure [12]. 

(3) Rule Module: This module stipulates provisions for steel structure welding, encompassing 

information on welding objects, processes, quality inspection, and associated aspects. These provisions 

imply various constraints guiding proper welding execution, facilitating the formulation of rules using 

a specific formatted approach. The logical relationships among these rules necessitate the adoption of 

production knowledge representation. 

(4) Model Module: This module  comprises welding process models tailored to diverse scenarios, 

such as H-beams, box-section steel, and circular tube steel. Each scenario features multiple welding 

node models, each composed of a three-dimensional model. These models facilitate a comprehensive 

understanding of welding processes and associated parameters. 

(5) Graphics Module: This module encompasses images, videos, scanned documents, and other non-

structured data captured at welding sites. Knowledge in this module is organized according to scene 

classification, employing an object-oriented knowledge representation for effective management and 

retrieval. 
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(6) Case Module: This module categorizes welding scenarios, each comprising varying working 

conditions subdivided into sub-scenes. These sub-scenes contain various model information, attribute 

parameters, etc., each stored in their respective modules. The interconnection between different sub-

scenarios is established through attribute relationships, forming a coherent frame network stored in the 

case module. Frame representation, adept at expressing structural knowledge and facilitating 

inheritance, enables the comprehensive representation of object relationships [13]. 

3.2. Knowledge storage for welding process  

The repository of knowledge primarily stems from external and internal sources [14]. External 

knowledge collection centers around standard specifications, technical documents, and construction 

manuals. Internal knowledge acquisition necessitates the establishment of data interfaces within 

completed production management systems, facilitating the periodic gathering of production data and 

cases to enable knowledge updates. Given the multifaceted nature of welding practices, the asscociated 

knowledge inherently exhibits a complex logical relationship. The adoption of a relational database 

management system (RDBMS) emerges as a logical choice, ensuring data consistency [15]. 

Consequently, the knowledge storage database in this study predominantly employs RDBMS. 

3.3. Knowledge usages for welding process 

The implementation mechanism of knowledge primarily entails the utilization of intelligent 

algorithms to approximate production information with cases in the knowledge base, sorting them based 

on case similarity. The most suitable cases are selected, and their parameters are exported to the digital 

twin for simulation modeling. Concurrently, an appropriate welding quality evaluation system is 

established. Parameters meeting quality standards are subsequently output to the welding equipment. 

(1) Retrieval of cases based on process similarity 

The process similarity entails the alignment of both geometric and non-geometric information, which 

is calculated by two methods, i.e., topological structure similarity calculation and process concept 

similarity calculation [16]. The topological structure pertains to geometric details and model 

specifications within a given case, while the similarity of process concepts encompasses non-geometric 

information, including descriptions of welding processes, operation steps, and other parameters. For a 

welding process, both the topological structure and process concept are deemed equally influential in 

determining case similarity. Thus, the calculation formula for welding process similarity, denoted as 

SimP(W), is established to appropriately capture the combined impact of topological structure and 

process concept: 

SimP(Wi)=0.5*SimT(Ti)+0.5*SimS(Si)                                                                                                 (1) 

Where SimT is the similarity of topological structure, and SimS is the similarity of process concept. 

A hierarchical topological structure can be adopted to represent the geometric information of welding 

processes. This structure aids in retrieving knowledge from the knowledge base. Categorization of 

different steel structures, their dimensions, and equipment further diversifies into various sub-scenes. 

Within the hierarchical topological structure, these sub-scenes, referred to as leaves, exhibit associative 

relationships. Solid lines within this structure denote connections between leaves and sub-leaves, as well 

as among different leaves. Based on these leaves and solid lines, a hierarchical structure of welding 

cases and new welding scenarios is delineated, as illustrated in Figure 2. 

The diverse hierarchical scenarios within the topological structure are delineated as distinct 

computational targets. For instance, in Figure 2, the hierarchical levels of cases (B, C) and (D, F, G) 

represent two independent computational objectives. SimT(T) is computed as the weighted sum of 

SimG(gi). 

𝑆𝑖𝑚𝑇(𝑇𝑗) = ∑ 𝑤𝑖 ∗ 𝑆𝑖𝑚𝐺(𝑔𝑖,𝑖=1 𝑇𝑗(𝑔𝑖))                                                                                              (2) 

where ∑ 𝑤𝑖 = 1, the weights associated with higher levels are more than those linked to lower levels. 

𝑆𝑖𝑚𝐺(𝑔𝑖𝑇𝑗(𝑔𝑖)) = ∑ 𝑤𝑢 ∗ 𝑆𝑖𝑚𝐸(𝑒𝑢,𝑢=1 𝐺𝑖(𝑒𝑢))                                                                                (3) 

where ∑ 𝑤𝑢 = 1. 
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Figure 2. Topology matching 

 

The calculation of welding process concept similarity is conducted through a weighted bipartite 

graph. By considering the non-geometric process information of both new welding tasks and welding 

process cases as distinct sets, a similarity matrix is generated between the new welding tasks and the 

cases. The maximum similarity pair determines the non-geometric process information similarity. 

Let N represents the welding process concept in the new welding task, and C denotes the welding 

process concept in the knowledge base: 

N={n1, n2,…nq}                                                                                                                            (4) 

C={c1, c2,…cl}                                                                                                                              (5) 

The similarity matrix for the two welding processes is denoted as S: 

S=[

𝑠11 ⋯ 𝑠1𝑞

⋮ ⋱ ⋮
𝑠𝑙1 ⋯ 𝑠𝑙𝑞

]                                                                                                                          (6) 

where sij is the similarity between the non-geometric process concept ni in the new welding task 

and the welding process concept cj in the knowledge base. msi,xi refers to the maximum similarity value 

in the ith row of the similarity matrix S. Therefore, the welding process concept similarity is calculated 

as: 

𝑆𝑖𝑚𝑆(𝑆𝑖) = (𝑆
∑ ms𝑖,𝑥𝑖

𝑙
𝑖=1

𝑙
)                                                                                                              (7) 

The cases are organized in descending order based on their process similarity. The case that best suits 

the new welding task is selected according to the similarity ranking, and the parameters are input into 

the model. 

(2) Simulation of welding processes 

In welding processes involving diverse entities such as workers, equipment, and materials, achieving 

an accurate mapping from the virtual to the physical realm necessitates the establishment of high-fidelity 

models. The proposed DT model is developed from both geometric and logical modeling. Geometric 

modeling encompasses the 3D representation of entities existing in the physical space, such as 

equipment, welding wires, and materials. These models are created using 3D modeling software like 

CATIA, SolidWorks, Tekla, etc., with the objective of offering comprehensive representations that 

accurately reflect the physical state of entities. The logical model precisely reflects how welding 

parameters influence the welding quality. 

(3) Welding quality evaluation 
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By simulating the welding process with matched welding parameters input into a virtual model, the 

neural network algorithm can generate the geometric dimensions of the welding seam. The quality of 

the weld is assessed using decision attributes from the rule database in the knowledge base. Based on 

the quality assessment results, parameters are interactively adjusted through human-machine interaction 

to optimize the selection of process parameters. The optimized results are then reintroduced into the 

knowledge base as new cases. 

4. ILLUSTRATIVE EXAMPLE 

The study uses the welding of H-shaped steel structure as an example to illustrate the application of 

the framework. The example adopts Tekla to build the target digital model. A knowledge base is tailored 

specifically for welding H-shaped steel, orchestrating the welding procedure through the DT model 

driven by knowledge. 
 

4.1. Developiment of welding digital twin for H-beam 

The welding process applied to H-shaped steel is delineated into ten sequential steps, as illustrated in 

Figure 3. Corresponding models are developed based on the requisite materials and equipment involved 

in these steps, thereby encapsulating the geometric attributes of the entity. Properties are thoughtfully 

assigned to each component within the model, as demonstrated in Figure 4. This allocation encompasses 

both welding product properties, such as material size and equipment dimensions, and process 

properties, including welding temperature, arc voltage, etc. 

 

 
Figure 3. Digital twin modeling of H-beam welding 

 
Figure 4. Properties assigned to individual components 
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4.2. Knowledge-enabled welding process 

Data concerning dimensions, equipment specifications, and other pertinent attributes related to the 

H-shaped steel are collected through various sensors. Subsequently, this data undergoes preliminary 

screening and matching within the knowledge base. Welding cases sharing similar information 

regarding base material quality, joint type, and welding posture are amalgamated to mitigate issues 

stemming from excessive data volume. 

The subsequent phase involves rough matching of welding parameters, wherein cases meeting 

predefined criteria based on recognized features identified in the DT model are selected. This process 

then transitions to fine-tuning matches, encompassing individual calculations of the correlation between 

existing weld characteristics in the cases, with a filtering mechanism applied to exclude cases falling 

outside a specified error range. The parameters derived from the filtered cases are then incorporated into 

the model to simulate the welding process, as depicted in Figure 5. 

  

 
Figure 5. Parameters incorporated into the model 

 

Leveraging the knowledge base, the welding DT can process welding parameters, mitigating quality 

variations attributed to manual welding through case process similarity calculation. The parameters 

derived from knowledge base preprocessing are then input into the DT model, where a neural network 

algorithm predicts welding quality, facilitating the refinement of parameters to enhance welding quality. 

Furthermore, the optimized parameters are extracted to update the knowledge base, thus closing the loop 

in welding knowledge management. This iterative process ensures the continuous refinement of welding 

practices. 

5. CONCLUSION 

This study proposes a framework of welding digital twin for steel structures. The framework 

facilitates the monitoring and optimization of the welding process, ultimately enhancing welding 

quality. The contributions of this study can be summarized as follows: 

(1) The establishment of a knowledge-driven DT system for welding steel structures. This framework 

effectively leverages existing knowledge, thereby enhancing the decision-making capabilities of DT. 
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(2) Refinement of the welding knowledge base. The knowledge base is organized into six modules, 

which support welding process parameter preprocessing, quality assessment, and optimization 

strategies. All these modules act as the driving force behind the DT model. Additionally, the knolwdge 

base can be continually updated through case analyses and integration. 

(3) Taking the welding of H-beam steel as an example, it shows the integration of geometric and non-

geometric characteristics of steel components into the DT model. The case information stored in the 

knowledge base is used for matching, and the matched parameter information is input into the digital 

twin model to complete quality prediction and parameter optimization. 
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