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Abstract: High-energy manufacturing processes, including laser welding, are actively being adopted 

not only in precision machinery industries but also in the shipbuilding and construction sectors. Laser 

welding, in particular, is gaining prominence in the industry due to its faster welding speed and reduced 

distortion compared to conventional arc welding methods. Integration of automated welding systems is 

anticipated to address challenges in shipbuilding and construction industries, which are currently facing 

a shortage of skilled labor. For successful implementation of automated welding systems, it is essential 

to predict and design for the post-welding effects, such as residual deformation and stresses. However, 

in the case of high-energy manufacturing like laser welding, the welding bead morphology differs from 

that of arc welding, and the heat load conditions applied during simulation are distinct. To facilitate 

accurate simulation predictions, the development of a suitable heat source for predicting welding bead 

morphology in high-energy manufacturing processes is crucial. The Block-dumping method is proposed 

for rapid simulation and on-site application, with the shape of the welding bead being imperative for its 

effectiveness. In this study, data on the welding bead morphology of Nickel-based steel was obtained. 

Using Deep Learning techniques, we successfully predicted the bead morphology and confirmed 

minimal discrepancies when compared to actual results. This outcome allows for the simulation of 

welding under untested conditions, offering practical applicability in the field. Additionally, we present 

a heat source model (heat load condition) to ensure a highly accurate interpretation of the results.  
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1. INTRODUCTION,  

High-energy manufacturing, characterized by rapid speed and minimal distortion, has expanded 

beyond precision machinery industries to find widespread application in the shipbuilding and 

construction sectors[1]. Welding, in particular, stands out as the most widely used fabrication process 

in industrial settings, owing to its relatively low processing costs and easy accessibility. While 

traditional arc welding has been extensively employed, it suffers from significant welding distortions. 

In contrast, fiber laser welding minimizes thermal deformation by concentrating heat in a narrow area 

for a short duration. This enables faster welding compared to arc welding, contributing significantly to 

improved productivity[2]. This addresses the shortcomings of traditional arc welding, such as slow 

processing speeds and significant distortions, and offers a solution by integrating with automated 

welding systems to overcome past challenges in relying on skilled labor. 

However, in industries like shipbuilding and construction, where large volumes are involved, 

predicting and designing for laser welding distortions are crucial. Much research has been conducted in 

this area[5,6]. Various methods, such as simplified analysis based on inherent strain based equivalent 

load method[7], moving heat source methods through heat source modeling[8-10], and the use of Block 

dumping[11], have been employed to predict welding distortions. While the moving heat source method 

provides precise predictions, it requires accurate determination of the heat source, making it time-

consuming for on-the-spot application in practical scenarios. To facilitate the aforementioned analysis, 
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it is necessary to refine the mesh in the welding direction, which results in a significant consumption of 

time and memory in the analysis of 3D models[12] 

The Block Dumping method is an analytical technique where the weld bead is discretized into a finite 

number of blocks in the welding direction, generating the blocks step by step for thermal deformation 

analysis. In this method, the heat source is assumed to be in the form of blocks, and volume heat flux is 

applied to the blocks generated at each step. The Block Dumping method offers advantages in terms of 

shorter analysis times compared to heat transfer models using moving heat sources, enabling efficient 

simulation of various models[11,13]. For the Block Dumping method, as illustrated in Fig. 1, the 

welding direction is divided into sections, and heat loads are applied to the modeled bead shape in a 

time-dependent manner, allowing for the prediction of welding distortions and residual stresses 

 

 
Fig.1. Block dumping method[14] 

 
To employ the Block Dumping method, it is essential to model the shape of the weld bead, and the 

derivation of the bead shape based on welding conditions must precede the analysis. In such cases, the 

inconvenience arises from the need to confirm the weld bead shape through Bead on Plate welding for 

welding distortion simulation. Consequently, there has been a request for solutions to address this issue 

in practical scenarios. 

In this study, we performed the prediction of weld bead shapes using Deep Learning to alleviate the 

need for tedious Bead on Plate welding for weld distortion simulation. We conducted Bead on Plate 

welding under approximately 50 processing conditions for Nickel-based steel, analyzing the bead 

shapes. Based on the analyzed data, we created a database and utilized it for training Deep Learning 

models. Subsequently, we predicted results for conditions not included in the training data and compared 

them with actual experimental results to analyze the validity of the predictions. With this research as a 

foundation, we anticipate a more straightforward prediction of welding distortion and residual stresses 

during laser welding in practical field applications. 

 

2. METHOD 

 

2.1. Bead on plate welding 

 
In this study, Bead on Plate (BOP) welding was conducted using a 9% nickel steel with dimensions 

of 600mm x 300mm x 6mm. The chemical composition of the 9% nickel steel is provided in Table 

1[15]. A fiber laser welding machine (Miyachi, Japan) capable of delivering a maximum output of 5 

kW was employed. The focal length was set at 148.8 mm, focal depth at 6 mm, and defocus at 0, with 

nitrogen (N2) used as the shielding gas at a flow rate of 15 L/min. Both tilting and working angles were 

fixed at 0°, and welding was performed under various welding power and speed conditions. 

 

Table 1. Chemical Compostion of 9% Nickel Steel (wt%) 

 

Component C Si Mn Cr S P Ni Fe 

Requirement 0.05 0.67 0.004 - 0.003 0.25 9.02 Bal. 
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After performing the welding, the cross-sectional shape was examined. For this purpose, a section of 

10mm in the welding direction and 25mm in the width direction from the center was cut. Subsequently, 

polishing was carried out, followed by etching with Nital solution (10% HNO3, Ethanol). The welded 

cross-section was then examined using a digital optical microscope with a resolution of 2 megapixels. 

 

The analysis of the cross-section is depicted in Fig.2. During the cross-sectional analysis, the 

dimensions of the melt line were examined, and classifications were made based on parameters such as 

bead width, penetration depth, and changes in position. 

 

 
 

Fig.2 Bead shape and dimension[16] 

 

2.2. Result of diverse condition 
 

Bead on Plate welding was performed on 9% nickel steel, and cross-sectional examinations were 

conducted, classifying key parameters based on the cross-section. The values of major parameters were 

observed for 50 different conditions, varying welding power and speed (see Table 2). Subsequently, a 

deep learning model was utilized to compare the bead shapes for 10 conditions not used in the model 

 
Table 2. Bead shapes of diverse condition 

 Condition Bead shape 

 
Power 

(kW) 

Velocity 

(mpm) 

Defocus 

(mm) 

Tilting 

angle 

(°) 

Top 

bead 

width 

(mm) 

Top 

HAZ 

width 

(mm) 

Middle 

bead 

width 

(mm) 

Concave 

depth 

(mm) 

HAZ 

depth 

(mm) 

Penetration 

(mm) 

case 1 3.0 0.3 0 90 5.063 9.063 3.625 2.267 6.750 5.563 

case 2 3.0 0.5 0 90 4.250 7.625 2.938 3.000 6.250 5.313 

case 3 3.0 0.8 0 90 3.000 5.750 1.875 2.356 5.500 5.063 

case 4 3.0 1.0 0 90 3.000 5.125 1.500 2.333 5.125 4.563 

case 5 3.0 1.2 0 90 2.625 4.750 1.250 2.133 4.938 4.563 
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case 6 3.0 1.5 0 90 2.625 4.250 1.125 1.867 4.375 4.250 

case 7 3.0 1.8 0 90 2.375 3.875 0.750 1.333 4.000 3.688 

case 8 3.0 2.0 0 90 2.125 3.750 0.875 1.422 4.125 3.938 

case 9 3.0 2.2 0 90 2.000 3.375 0.750 1.356 4.000 3.813 

….. 

case 49 2.0 3.0 0 90 0.911 1.851 0.508 0.392 2.225 2.060 

case 50 5.0 3.5 0 90 1.239 2.672 0.567 0.784 4.643 4.464 

 

 

3. RESULT 

 
Based on the database compiled in Section 2.2, predictions were made for conditions not tested in the 

experiments. In this study, predictions were conducted for 10 cases under the condition where the 

welding power was 4.5 kW, and the results are presented in Table 3. 

 
Table 3. Estimated bead shapes  

 Condition Bead shape 

 
Power 

(kW) 

Velocity 

(mpm) 

Defocus 

(mm) 

Tilting 

angle 

(°) 

Top 

bead 

width 

(mm) 

Top 

HAZ 

width 

(mm) 

Middle 

bead 

width 

(mm) 

Concave 

depth 

(mm) 

HAZ 

depth 

(mm) 

Penetration 

(mm) 

case 1 4.5 0.5 0 90 4.830 8.065 2.704 2.650 7.747 6.923 

case 2 4.5 0.8 0 90 4.126 7.081 2.221 2.321 7.046 6.358 

case 3 4.5 1.0 0 90 3.656 6.425 1.899 2.102 6.579 5.982 

case 4 4.5 1.2 0 90 3.186 5.769 1.576 1.883 6.112 5.606 

case 5 4.5 1.5 0 90 2.601 4.976 1.169 1.597 5.584 5.174 

case 6 4.5 1.8 0 90 2.356 4.387 1.083 1.456 5.189 4.878 

case 7 4.5 2.0 0 90 2.232 4.080 1.040 1.380 4.999 4.738 

case 8 4.5 2.2 0 90 2.120 3.802 1.004 1.309 4.830 4.615 

case 9 4.5 2.5 0 90 1.967 3.407 0.944 1.208 4.583 4.435 

case 10 4.5 3.0 0 90 1.886 3.025 0.778 1.101 4.285 4.184 

 
To validate the predicted results, experiments and cross-sectional analyses were conducted based on 

the content of Section 2 for the 4.5 kW condition. The results are presented in Table 4, and the error 

rates comparing the predicted values with the actual values are provided in Table 5. 

 
Table 4. Real bead shapes  

 Condition Bead shape 

 
Power 

(kW) 

Velocity 

(mpm) 

Defocus 

(mm) 

Tilting 

angle 

(°) 

Top 

bead 

width 

(mm) 

Top 

HAZ 

width 

(mm) 

Middle 

bead 

width 

(mm) 

Concave 

depth 

(mm) 

HAZ 

depth 

(mm) 

Penetration 

(mm) 

case 1 4.5 0.5 0 90 5.938 11.125 4.375 3.400 10.000 8.688 

case 2 4.5 0.8 0 90 5.125 9.375 4.063 2.289 7.750 6.688 

case 3 4.5 1.0 0 90 4.625 7.563 2.438 1.911 6.875 6.313 

case 4 4.5 1.2 0 90 3.875 6.563 1.750 1.600 6.375 5.688 

case 5 4.5 1.5 0 90 3.938 6.000 1.875 1.756 5.813 5.375 

case 6 4.5 1.8 0 90 3.188 5.188 1.500 1.711 5.375 4.938 
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case 7 4.5 2.0 0 90 3.250 4.750 1.000 1.356 5.125 4.813 

case 8 4.5 2.2 0 90 3.000 4.438 0.938 1.644 5.000 4.688 

case 9 4.5 2.5 0 90 2.625 4.188 0.875 1.756 4.875 4.563 

case 10 4.5 3.0 0 90 2.625 3.813 0.813 1.422 4.688 4.438 

 
Table 5. Error rate of real and estimated case  

 Condition Bead shape 

 
Power 

(kW) 

Velocity 

(mpm) 

Defocus 

(mm) 

Tilting 

angle 

(°) 

Top 

bead 

width 

(%) 

Top 

HAZ 

width 

(%) 

Middle 

bead 

width 

(%) 

Concave 

depth 

(%) 

HAZ 

depth 

(%) 

Penetration 

(%) 

case 1 4.5 0.5 0 90 22.9 37.9 61.8 28.3 29.1 25.5 

case 2 4.5 0.8 0 90 24.2 32.4 82.9 -1.4 10.0 5.2 

case 3 4.5 1.0 0 90 26.5 17.7 28.4 -9.1 4.5 5.5 

case 4 4.5 1.2 0 90 21.6 13.8 11.0 -15.0 4.3 1.5 

case 5 4.5 1.5 0 90 51.4 20.6 60.4 9.9 4.1 3.9 

case 6 4.5 1.8 0 90 35.3 18.2 38.5 17.5 3.6 1.2 

case 7 4.5 2.0 0 90 45.6 16.4 -3.8 -1.8 2.5 1.6 

case 8 4.5 2.2 0 90 41.5 16.7 -6.6 25.6 3.5 1.6 

case 9 4.5 2.5 0 90 33.5 22.9 -7.3 45.3 6.4 2.9 

case 10 4.5 3.0 0 90 39.2 26.0 4.4 29.2 9.4 6.1 

 

4. Discussion 

 
This study focuses on predicting the shape of the weld bead for welding distortion analysis, employing 

the deep learning method. Typically, to minimize error rates in deep learning, a sufficient amount of 

data needs to be gathered based on hundreds of cases. In this study, due to time and cost constraints 

associated with BOP welding and cross-sectional analysis, the training was conducted based on 

approximately 50 cases, resulting in a somewhat higher anticipated error rate. To facilitate a 

straightforward verification of the errors between actual and predicted values, visualization was 

performed, as depicted in Fig.3. 

 

 

1192



 

 
 

Fig 3. Graph for real and estimated case 

 

According to Fig. 3, a trend is observed, but there seems to be some level of error. While the approach 

of this study holds significance, to derive more meaningful results, it is suggested that further research 

be conducted by accumulating more data for training. Alternatively, even with limited data, using 

Physics Informed Neural Network (PINN) could yield more meaningful and accurate results, calling for 

subsequent studies in this direction. 
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