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Abstract: Human-robot collaboration (HRC) is an emerging form of work anticipated to improve 

construction productivity by integrating robotic capabilities with human expertise. With the expected 

transition towards tasks that demand more cognitive efforts for human workers, considering the 

cognitive status of each co-worker, such as task engagement and vigilance, can become crucial to 

achieve high-quality human performance during HRC, potentially contributing to a more productive 

HRC in construction. However, the potential cognitive changes of each co-worker have remained 

unclear during HRC, as studies have primarily focused on identifying general trends from aggregated 

cognitive responses of people, in which an individual’s response can be overlooked. In this study, we 

examine the cognitive response of each co-worker during HRC for a construction task. We observed the 

cognitive responses of 18 people while they were experiencing different collaborating conditions, such 

as the robot’s different movement speed, during a bricklaying task with an arm-type collaborative robot. 

For each participant, we analyzed electroencephalogram (EEG) signals to identify the changes in 

cognitive status by using a wearable EEG headset. The results present that the cognitive responses of 

almost all the participants were significantly and differently affected during HRC, impacting the 

estimated productivity of their human-robot teams. The findings of the study present the importance of 

considering each co-worker’s potentially unique cognitive response as a way to achieve cognitive well-

being while pursuing high productivity within human-robot teams, potentially contributing to overall 

productive HRC in construction. 
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1. INTRODUCTION 

The construction industry has suffered from stagnant productivity growth and high safety risk 

compared to other industries [1,2]. For the past two decades since 1995, the productivity (real gross 

value added per labor hour) of the construction industry has grown around 1%, while the average annual 

growth by the total global economy was 2.8% [3]. Additionally, the safety of construction workers is 

concerning, with a fatal work injury rate of 13.0 for 100,000 full-time workers in 2022, while that of all 

industries was 3.6 [2]. With other ongoing issues within the industry, such as the aging workforce and 

the labor shortage [4], stagnant productivity and high safety risk can become more critical challenges.  

In response to these challenges, Human-Robot Collaboration (HRC) is envisioned as a promising 

paradigm shift toward co-robotic construction [5]. Collaborative robots, an evolved form of 

conventional industrial robots, are expected to combine the strength of humans and robots in the form 

of collaboration [6]. Robots can take over physically demanding, dangerous, and repetitive tasks to make 
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room for human workers to focus on dexterous, problem-solving, and decision-making tasks [6]. The 

reduced dependence on workers’ manual labor and increased level of robotic automation holds the 

potential to improve construction productivity and the safety of workers. 

To realize its potential, efforts have been made with a primary focus on advancing robotic capabilities 

to ensure seamless and safe interactions between humans and robots. This involves equipping robots 

with sensors like cameras and microphones to interpret different signals from humans, such as hand 

gestures and gazes, for seamless collaboration [7,8]. Additionally, enabling robots to recognize their 

human co-workers has been another major focus to ensure safe HRC by preventing undesired physical 

contact like collisions [9]. This focus on the technical aspects of robots has served as a major driving 

factor toward productive and safe HRC in construction.  

Recently, preliminary efforts have emerged that begin to highlight the potential importance of 

considering human responses for the success of HRC in construction. Particularly, the cognitive status 

of people—defined as the level of activation in mental processes for acquiring knowledge and 

understanding, such as engagement and attention—is expected to become increasingly important within 

the new co-robotic work environment [10,11]. As robots assume portions of the physical workload, the 

primary roles of human workers can shift toward tasks that demand greater cognitive effort, including 

decision-making, problem-solving, and supervising [6]. In preparation for this shift, an in-depth 

understanding of the cognitive responses of people during HRC can help lead to high-quality human 

performance, thereby contributing to better productivity of human-robot teams in construction.  

To understand the cognitive responses of people during HRC, preliminary studies have been directed 

towards examining how different collaborating conditions, such as robot’s autonomy levels, could cause 

cognitive changes in people, including cognitive load. For example, Shayesteh and Jebelli (2022) [11] 

demonstrated through an experiment in a virtual reality (VR) environment that working with an 

autonomous robot generally caused a higher cognitive load for people compared to a semi-autonomous 

robot. These findings can provide valuable insights for accommodating people’s cognitive responses to 

the design and implementation of HRC, such as determining the robot’s autonomy levels to reduce the 

cognitive load of people. Nevertheless, such insights may not accurately reflect every co-worker’s 

cognitive response to HRC due to personal differences such as skill levels and experience [12]. 

Overlooking these potential individual variances among co-workers can lead to suboptimal cognitive 

states, such as cognitive overload, possibly hampering the anticipated productivity growth from HRC. 

This highlights the critical need for considering individual differences in cognitive responses to 

construct productive work environments for human-robot teams. 

However, there exist notable gaps in our understanding of each co-worker’s cognitive response during 

HRC. First, it remains unclear how collaborating conditions, such as robots’ different movement speeds, 

can be influential to the cognitive responses of different co-workers, as previous studies have primarily 

focused on analyses that aggregate data, overlooking each co-worker’s response [11,13]. Second, the 

potential similarity or difference between cognitive responses of different co-workers has not been 

uncovered, which can provide insight into the importance of focusing on individual differences in 

addition to identifying the generic responses in people. Third, it is unclear how cognitive responses of 

different co-workers can influence the productivity of human-robot teams. Although previous studies 

characterized cognitive responses of people during HRC [13], the potential impacts of considering 

cognitive responses of co-workers on the productivity of human-robot teams have not been understood 

yet. Answering these questions is expected to deepen our understanding for each co-worker’s cognitive 

response during HRC by identifying potential differences in cognitive responses among co-workers, 

along with their potential impacts on the productivity of human-robot teams.  

To fill these knowledge gaps, we aim to examine each co-worker’s cognitive response while 

collaborating with a robot. We analyzed electroencephalogram (EEG) signals from each of 18 

participants to identify their cognitive responses while they experienced different collaborating 

conditions (e.g., robot’s different movement speeds) with an arm-type collaborative robot during a 

simulated construction task in a lab environment. The findings of this study are expected to provide 

insights into the potential importance of considering cognitive responses, especially individual 

differences among co-workers, as an effective pathway for fostering productive HRC in construction. 

2. METHOD 

In this study, we aim to identify the inter-relationship between cognitive responses of each co-worker 

corresponding to parameters of HRC (e.g., robot’s movement speed) during HRC for a construction 

1050



 

task. We observed the cognitive responses of 18 people while they were interacting with an arm-type 

collaborative robot in a lab environment for a simulated bricklaying task (Figure 1a). The participants 

experienced different collaborating conditions, parametrized by five parameters: 1) robot’s movement 

speed; 2) robot’s arm swing speed; 3) proximity; 4) level of autonomy; and 5) leader of collaboration 

(Figure 1b). Corresponding cognitive responses of people were identified by analyzing EEG signals, 

measured by a wearable EEG headset (Figure 1c). Notably, this method originates from our prior study 

[14], which aimed at examining the emotional responses of each co-worker during HRC. In this study, 

we utilize EEG signals collected from the prior study [14] to identify the cognitive responses of each of 

the 18 participants. 

 

 

Figure 1. Overview of the proposed method. 

2.1. Participants 

We recruited 18 participants, consisting of 11 men and 7 women, who were students from various 

academic backgrounds such as engineering, music, and social science (mean age: 28; standard deviation 

of age: 3.2; minimum age: 23; and maximum age: 36). These diverse participants were expected to 

provide a wide range of different cognitive responses during their interactions with a robot, compared 

to construction workers who may have occupational biases toward robots caused by concern and fear 

of job loss due to robotic automation [15].  

2.2. Bricklaying Task 

The bricklaying task can be considered a representative example of distributing tasks between humans 

and robots in construction [14]. For example, robots take over physically demanding tasks like lifting 

bricks while workers focus on dexterous tasks like finishing. As such, examining the cognitive responses 

of people while conducting the bricklaying task with robots is expected to provide a generalizable 

understanding of the cognitive responses of people to robots in the construction environment. In this 

context, we conducted some portion of the bricklaying task to simulate the representative task 

distribution between humans and robots; for a team of one human and one robot, the robot delivered 

bricks for the human co-worker to lay them in a line.  

The bricklaying task was conducted in a lab at the University of Michigan with an arm-type KUKA 

KR 120 robot. Bricks were attached with steel plates so the robots could lift and deliver them with 

magnetic end-effector (Figure 2a and 2b). For the safety of participants, our lab environment is equipped 

with laser sensor to detect and avoid very close proximity between humans and the robot, and the 

subjects wore the personal protective equipment (PPE) that are generally required by construction 

workers, such as a safety helmet, gloves, eyewear, and steel toes (Figure 2c). 

 

Figure 2. Lab environment for the bricklaying task. 

2.3. Five Parameters of HRC 
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Different collaborating conditions were simulated by changing the conditions of five parameters, 

determined due to their potential influence on human responses [14]: 1) movement speed; 2) arm swing 

speed; 3) proximity between humans and robots; 4) level of autonomy; and 5) leader of collaboration. 

Each participant experienced 8 sessions (Table 1). Each session simulated the different combinations of 

the conditions of the 5 parameters, which were expected to lead to different human responses based on 

previous studies [14]. For each session, each participant laid 10 bricks with the robot for 5 minutes (i.e., 

2 bricks per team-minute), followed by 3 minutes of break, resulting in 64 minutes duration for the 8 

sessions. Cognitive responses from different pairings of the sessions facilitated the analysis of cognitive 

changes in response to each parameter, with the other four parameters being controlled: sessions 1, 2, 

and 3 for different robot’s movement speed; 1, 4, and 5 for different robot’s arm swing speed; 1 and 6 

for different proximity; 1 and 7 for different levels of autonomy; and 1 and 8 for different leader of 

collaboration.  

Table 1. Conditions of the Five Parameters of Robots for Each of the 8 Sessions. 
 

Sessions 
Movement 

Speed 

Arm Swing 

Speed 
Proximity 

Level of 

Autonomy 

Leader of 

Collaboration 
Duration 

1 79.8 cm/s 73.2 cm/s Direct  Auto Robot 

5 mins for 

session 

w/ 

3 mins break 

 

(Total 64 

mins) 

2 27.8 cm/s 73.2 cm/s Direct  Auto Robot 

3 143.8 cm/s 73.2 cm/s Direct  Auto Robot 

4 79.8 cm/s 23.8 cm/s Direct  Auto Robot 

5 79.8 cm/s 109.1 cm/s Direct  Auto Robot 

6 79.8 cm/s 73.2 cm/s Indirect  Auto Robot 

7 79.8 cm/s 73.2 cm/s Direct  Manual Robot 

8 79.8 cm/s 73.2 cm/s Direct  Auto Human 

 

2.4. EEG-based Cognitive Response Analysis 

EEG has been identified as an effective measurement for cognition analysis by capturing brain 

activities [16]. We used a wearable EEG headset (Emotiv EPOC FlexTM) to collect EEG signals from 

14 electrodes over the scalp, which are known to be associated with cognitive activities (Figure 3a and 

3b). In this study, we analyzed two distinct cognitive dimensions: task engagement and vigilance, which 

can affect human performance during task conductance (Figure 3c) [17]. Task engagement can be 

defined as demands for sensory processing during task conductance, and vigilance can be defined as 

alertness to external contingencies, which is often interchangeably used with other terms such as arousal 

and attention [18,19]. The states of task engagement and vigilance can lead to different qualities of 

human performance by determining the cognitive status, ranging from suboptimal—such as mind 

wandering, inattentional blindness, and inattentional deafness—to optimal [17]. From EEG signals 

collected from the electrodes, the task engagement can be measured by calculating the ratio of beta band 

(12-35 Hz) power over the sum of alpha (8-12 Hz) and theta band (4-8 Hz) power, and the vigilance 

was calculated by taking ratio of theta band power to beta band power (Eq. 1 and 2) [20].  

 

 

Figure 3. Cognitive response analysis based on EEG signal analysis. 

 

𝑇𝑎𝑠𝑘 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 =  
𝛽

𝛼+𝜃
                                                     (Eq. 1) 

1052



 

𝑉𝑖𝑔𝑖𝑙𝑎𝑛𝑐𝑒 =  
𝜃

𝛽
                                                                         (Eq. 2) 

 

3. EFFECTS OF CONSIDERING COGNITIVE RESPONSES ON THE 

PRODUCTIVITY OF HUMAN-ROBOT TEAMS 

We examined the cognitive response of each participant according to the five parameters of HRC by 

following the analyses that were effective in identifying the emotional response of each co-worker 

during HRC in our prior study [14].   

3.1. Effect of HRC Parameters on the Cognitive Responses 

We applied a multiple linear regression to characterize each participant’s cognitive responses (i.e., 

task engagement and vigilance) to the five parameters of HRC (Eq. 3). The regression model was 

empirically determined that was effective in fitting the cognitive responses of 18 participants in general. 

We obtained two regression models for each participant, one for task conductance and another for 

vigilance. Notably, the regression model considers time as a control variable to mitigate its effect on the 

analysis, which could affect human response but is not the focus of this study [21].  

 
𝑦𝑖 = 𝑐1𝑥1

2 + 𝑐2𝑥1 + 𝑐3𝑥2
2 + 𝑐4𝑥2 + 𝑐5𝑥3 + 𝑐6𝑥4 + 𝑐7𝑥5 + 𝑐8(𝑇𝑖𝑚𝑒) +  𝛽                   (Eq. 3) 

 

𝑤ℎ𝑒𝑟𝑒 𝑦𝑖 = {𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑉𝑖𝑔𝑖𝑙𝑎𝑛𝑐𝑒 , 𝑥𝑗

= {𝑀𝑜𝑣𝑒 𝑆𝑝𝑒𝑒𝑑 𝐴𝑟𝑚 𝑆𝑝𝑒𝑒𝑑 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝐴𝑢𝑡𝑜𝑛𝑜𝑚𝑦  𝐿𝑒𝑎𝑑𝑒𝑟 𝑜𝑓 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑎𝑛𝑑 𝛽
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

The F-test of overall significance was conducted to statistically demonstrate the significance of the 

parameters of HRC to each participant’s engagement and vigilance regression models. The results of 

the F-test revealed that either engagement, vigilance, or both of 17 out of 18 participants (94.5%) were 

significantly affected by the parameters of HRC, indicated by the significant p values (<0.05).  

3.2. Comparison of Cognitive Response of People 

We statistically compared cognitive responses of every distinct pair of participants, resulting in 153 

pairs from 18 participants. Specifically, we applied a nested linear regression analysis to represent one 

participant’s cognitive responses (i.e., task engagement and vigilance) by using regression coefficients 

from another participant (𝑐𝑖) (Eq. 3). Coefficients 𝑑𝑖 indicated if 𝑐𝑖 was sufficient in representing the 

participant’s response; any non-zero 𝑑𝑖 indicated there remained unrepresented cognitive responses by 

𝑐𝑖, and thus, two people have statistically different cognitive responses.  

 
𝑦𝑖 = 𝑐1𝑥1

2 + 𝑐2𝑥1 + 𝑐3𝑥2
2 + 𝑐4𝑥2 + 𝑐5𝑥3 + 𝑐6𝑥4 + 𝑐7𝑥5 + 𝑐8(𝑇𝑖𝑚𝑒) + 𝛽1                    

+ 𝑆𝑏𝑗(𝑑1𝑥1
2 + 𝑑2𝑥1 + 𝑑3𝑥2

2 + 𝑑4𝑥2 + 𝑑5𝑥3 + 𝑑6𝑥4 + 𝑑7𝑥5 + 𝑑8(𝑇𝑖𝑚𝑒) + 𝛽2)         (Eq. 3) 

 

𝑤ℎ𝑒𝑟𝑒 𝑆𝑏𝑗 =  {0 𝑓𝑜𝑟 𝑃𝑒𝑟𝑠𝑜𝑛 1 1 𝑓𝑜𝑟 𝑃𝑒𝑟𝑠𝑜𝑛 2 , 𝑦𝑖 = {𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑉𝑖𝑔𝑖𝑙𝑎𝑛𝑐𝑒 , 𝑥𝑗

= {𝑀𝑜𝑣𝑒 𝑆𝑝𝑒𝑒𝑑 𝐴𝑟𝑚 𝑆𝑝𝑒𝑒𝑑 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝐴𝑢𝑡𝑜𝑛𝑜𝑚𝑦  𝐿𝑒𝑎𝑑𝑒𝑟 𝑜𝑓 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛 , 𝛽𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 

T-tests were conducted on each of 𝑑𝑖 to reveal if any of 𝑑𝑖 were statistically equal to zero or not. 

Results showed that among the 153 comparisons, in 149 (i.e., 97.4%), at least one regression coefficient 

with respect to either engagement or vigilance or both were significantly different (p<0.05). It presents 

that almost every participant was likely to show significantly unique cognitive responses during HRC.  

3.3. Effect of HRC Parameters on the Cognitive Responses 

We examined the relationship between the cognitive response of each co-worker and the estimated 

productivity of human-robot teams by establishing a parametric connection. Specifically, we estimated 

productivity in terms of the five parameters of HRC by following the derivation from our prior study 

[14] (Eq. 3). The identical basis (five parameters of HRC) for estimating both the cognitive responses 

and the estimated productivity enabled us to examine the intertwined changes according to the five 

parameters. Estimated productivity, defined as the number of bricks laid for one hour by a human-robot 

team, was derived by calculating the bricklaying times for one robot and one human based on five HRC 
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parameters were calculated (Eq. 5.1 and 5.2), aggregating these into a human-robot team's bricklaying 

time (Eq. 5.3), and then converting this into the hourly brick count for the team (Eq. 5.4).  

 
𝑇𝑖𝑚𝑒 (𝑠𝑒𝑐) 𝑓𝑜𝑟 𝑎 𝑟𝑜𝑏𝑜𝑡 𝑡𝑜 𝑙𝑎𝑦 𝑎 𝑏𝑟𝑖𝑐𝑘 (𝑖. 𝑒. , 𝑅𝑜𝑏𝑜𝑡⎯𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑝𝑒𝑟 𝑏𝑟𝑖𝑐𝑘)  

= 𝐵𝑜𝑑𝑦 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑇𝑖𝑚𝑒 + 𝐴𝑟𝑚 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑇𝑖𝑚𝑒 + 𝐷𝑒𝑙𝑎𝑦 𝑏𝑦 𝑀𝑎𝑛𝑢𝑎𝑙 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 

=  
𝐵𝑜𝑑𝑦 𝑇𝑟𝑎𝑣𝑒𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑆𝑝𝑒𝑒𝑑
+

𝐴𝑟𝑚 𝑇𝑟𝑎𝑣𝑒𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐴𝑟𝑚 𝑆𝑤𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑
+  1(𝑀𝑎𝑛𝑢𝑎𝑙) ∗ 𝛼              (𝐸𝑞. 5.1) 

𝑤ℎ𝑒𝑟𝑒 𝐵𝑜𝑑𝑦 𝑇𝑟𝑎𝑣𝑒𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑠 6.1𝑚, 𝐴𝑟𝑚 𝑇𝑟𝑎𝑣𝑒𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑠 2.4𝑚, 
𝑎𝑛𝑑 𝛼 𝑖𝑠 𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑐𝑎𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑎𝑛𝑢𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 

 

𝑇𝑖𝑚𝑒 (𝑠𝑒𝑐) 𝑓𝑜𝑟 𝑎 ℎ𝑢𝑚𝑎𝑛 𝑡𝑜 𝑙𝑎𝑦 𝑎 𝑏𝑟𝑖𝑐𝑘 (𝑖. 𝑒. , 𝐻𝑢𝑚𝑎𝑛⎯𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑝𝑒𝑟 𝑏𝑟𝑖𝑐𝑘)
= 𝐵𝑟𝑖𝑐𝑘𝑙𝑎𝑦𝑖𝑛𝑔  𝑇𝑖𝑚𝑒 + 𝐷𝑒𝑙𝑎𝑦𝑠 𝑏𝑦 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑎𝑛𝑑 𝐻𝑢𝑚𝑎𝑛 𝐿𝑒𝑎𝑑𝑒𝑟   

=  𝐵𝑟𝑖𝑐𝑘𝑙𝑎𝑦𝑖𝑛𝑔  𝑇𝑖𝑚𝑒 + 1(𝐻𝑢𝑚𝑎𝑛 𝐿𝑒𝑎𝑑𝑒𝑟) ∗ 𝛽 + 1(𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡) ∗ 𝛾            (𝐸𝑞. 5.2) 
𝑤ℎ𝑒𝑟𝑒 𝐵𝑟𝑖𝑐𝑘𝑙𝑎𝑦𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑖𝑠 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 

𝛽 𝑖𝑠 𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 1 𝑠𝑒𝑐𝑜𝑛𝑑 𝑤ℎ𝑒𝑛 𝑎 ℎ𝑢𝑚𝑎𝑛 𝑤𝑎𝑠 𝑎 𝑙𝑒𝑎𝑑𝑒𝑟, 
𝑎𝑛𝑑 𝛾 𝑖𝑠 𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑐𝑎𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 

 

𝑇𝑖𝑚𝑒 (𝑠𝑒𝑐) 𝑓𝑜𝑟 𝑎 𝐻𝑢𝑚𝑎𝑛⎯𝑅𝑜𝑏𝑜𝑡 𝑡𝑒𝑎𝑚 𝑡𝑜 𝑙𝑎𝑦 𝑎 𝑏𝑟𝑖𝑐𝑘 (𝑖. 𝑒. , 𝑇𝑒𝑎𝑚⎯𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑝𝑒𝑟 𝑏𝑟𝑖𝑐𝑘)         
= (𝐸𝑞. 5.1) + (𝐸𝑞. 5.2)                                                                                                   (𝐸𝑞. 5.3) 

 

         𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑒𝑎𝑚 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑖. 𝑒. , 𝐵𝑟𝑖𝑐𝑘𝑠 𝑝𝑒𝑟 𝑇𝑒𝑎𝑚⎯ℎ𝑜𝑢𝑟 𝑜𝑓 𝑂𝑛𝑒 𝐻𝑢𝑚𝑎𝑛 𝑎𝑛𝑑 𝑂𝑛𝑒 𝑅𝑜𝑏𝑜𝑡) 

= {
1 𝐵𝑟𝑖𝑐𝑘

(𝐸𝑞. 5.3) 𝑇𝑒𝑎𝑚⎯𝑠𝑒𝑐𝑜𝑛𝑑
} × (

3,600 𝑇𝑒𝑎𝑚⎯𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑇𝑒𝑎𝑚⎯ℎ𝑜𝑢𝑟
)          

=
3,600

𝐸𝑞. 5.3
 𝐵𝑟𝑖𝑐𝑘𝑠 𝑝𝑒𝑟 𝑇𝑒𝑎𝑚⎯ℎ𝑜𝑢𝑟 𝑜𝑓 𝑂𝑛𝑒 𝐻𝑢𝑚𝑎𝑛 𝑎𝑛𝑑 𝑂𝑛𝑒 𝑅𝑜𝑏𝑜𝑡              (𝐸𝑞. 5.4) 

 

We explored three scenarios of configuring values for the five parameters of HRC, representing 

different approaches of considering cognitive responses during HRC (Table 2). In the first scenario, the 

values for the parameters were standardized across all 18 participants by prioritizing productivity 

without considering cognitive responses. For example, the robot’s movement speed was set to its 

maximum, 143.8 cm/s for all participants. In the second scenario, the parameters were standardized 

across all the participants, aiming to balance their collective cognitive responses with the maximization 

of estimated productivity in human-robot teams. Specifically, we selected parameter values expected to 

evoke moderate levels of task engagement and vigilance in as many participants as possible, which can 

result in optimal human performance (Figure 3c) [14]. However, since there was no clear numerical 

boundaries to define moderate levels of task engagement and vigilance, we conducted 3-means 

clustering to assume the middle cluster as moderate level after collecting cognitive responses according 

to wide different values of the five parameters within the specific ranges: movement speed from 0 cm/s 

to 143.8 cm/s; arm swing speed from 0 cm/s to 109.1 cm/s; proximity as either direct or indirect; level 

of autonomy as either manual or auto; and leader of collaboration as either human leader or robot leader. 

This approach was inspired by previous studies [22], which analyzed the intensity of human responses 

(e.g., mental workload) based on unsupervised machine learning techniques like clustering. In the third 

scenario, we aimed to find individualized values for the five parameters, which could evoke moderate 

task engagement and vigilance for each participant, while achieving the highest possible estimated 

productivity during HRC.  

Table 2. Three Scenarios of Configuring the Five Parameters of HRC. 

Three Scenarios Consistency  Objectives  

1 Productivity-prioritized Standardized Only Productivity 

2 Collective Response-based Standardized Only Moderate Cognitions 

3 Individual Response-based Individualized Moderate Cognitions and Productivity 

 

For each of the three scenarios, we identified the corresponding estimated cognitive responses of 

participants and estimated productivity of human-robot teams (Table 3). Results present that 

individualized configuration of the parameter values for each co-worker can be the most effective 

strategy to balance the desired moderate cognitive status of people, while achieving high productivity 

of human-robot teams. As a result of the third scenario, all 18 participants were expected to have 

moderate cognitive status, while achieving average of 298 bricks for one team-hour, the second highest 
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productivity among the three scenarios. The comparison of this scenario with the first scenario is 

particularly noteworthy, which was estimated to achieve the highest productivity (i.e., 314 bricks for 

one team-hour). However, except for 8 out of 18 participants (44.5%), cognitive status of most of the 

participants were not expected to be moderate during HRC. Prolonged HRC with low or high cognitive 

activations can restrict human performance by causing mind wandering and inattention, thereby 

ultimately affecting the overall productivity and cohesiveness in human-robot teams [17]. It is 

noteworthy that the cognitive changes were observed even though participants noticed they were 

technically safe during the simulated HRC. This presents that cognitive responses can become another 

important dimension for HRC to take into account, in addition to the technical capabilities of robots, 

which have been a major focus of studies for productive HRC in construction. In addition, considering 

the collective cognitive responses could evoke moderate cognitive status for 12 out of 18 participants, 

while achieving 207 bricks for one team-hour, which was the lowest. Due to the disparity between 

cognitive responses among people, it was very challenging to lead to the desired cognitive status for 

different people with the standardized approach. It was also not very effective in achieving high 

productivity in human-robot teams. As a result, the most effective strategy was to concentrate on each 

co-worker’s cognitive response, which could achieve a balanced integration of co-workers’ cognitive 

well-being while pursuing the high productivity in human-robot teams. 

Table 3. Estimated Cognitive Responses and Team Productivity Across Three Scenarios. 

Three Scenarios  
# of People of  

Moderate Cognitions 

Estimated Productivity of 

Human-Robot Teams 

1 Productivity-prioritized 8 out of 18 314 bricks per one team-hour 

2 Collective Response-based 12 out of 18 207 bricks per one team-hour 

3 Individual Response-based 18 out of 18 298 bricks per one team-hour 

 

4. CONCLUSION 

HRC is anticipated to improve the productivity of the construction industry by combining the strength 

of humans and robots. Cognitive responses can be crucial to achieve productive HRC due to their critical 

impacts on human performance and cohesiveness in human-robot relationships, however, cognitive 

response of each co-worker during HRC has not been identified. In this study, we examined the 

cognitive responses for each of 18 participants in response to the different collaborating conditions 

during HRC for a bricklaying task in a lab environment. The results identified that the cognitive response 

of almost every participant was significantly and differently affected during HRC, which also could 

affect the estimated productivity of human-robot teams. The results present the importance of 

considering each co-worker’s cognitive response as an effective pathway for achieving cognitive well-

being of different co-workers while pursuing high productivity in human-robot teams, which can 

ultimately contribute to a more productive HRC. Follow-up studies are expected, which involve the 

cognitive responses of construction workers during HRC. Going forward, the findings of the study can 

serve as a solid foundation for future research, aiming to better accommodate human responses with the 

technical capabilities of construction robots for the successful deployment of HRC in construction. 
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