DOI QR코드

DOI QR Code

Applications, Challenges, and Future Research Directions for Passive Exoskeletons in the Construction Industry: A Critical Review

  • Masood KHAN (Department of Building and Real Estate, Faculty of Construction and Environment, The Hong Kong Polytechnic University) ;
  • Maxwell Fordjour ANTWI-AFARI (Department of Civil Engineering, College of Engineering and Physical Sciences, Aston University) ;
  • JoonOh SEO (Department of Building and Real Estate, Faculty of Construction and Environment, The Hong Kong Polytechnic University) ;
  • Shahnawaz ANWER (Department of Building and Real Estate, Faculty of Construction and Environment, The Hong Kong Polytechnic University) ;
  • Kelvin HEUNG (Department of Building and Real Estate, Faculty of Construction and Environment, The Hong Kong Polytechnic University)
  • Published : 2024.07.29

Abstract

Much labour is required in the labour-intensive construction sector for workers to do physically taxing jobs like plastering, paving, surfacing, material lifting, hauling, scaffolding, etc. Passive exoskeletons have been advocated and examined in previous studies to reduce physical demands, improve work efficiency, and prevent work-related musculoskeletal disorders in construction workers. This review study examined previous studies performed on passive exoskeletons in construction or other occupational domains with the aim of finding the working principles and design requirements of the passive exoskeletons, their applicability and usability in occupational settings, and the potential challenges in their adoption, thereby finding future research directions that can overcome those challenges. Three working principles were identified: muscle assistance, joint load reduction, and maintaining proper posture. The design requirements to achieve one or more of these working principles may have a few undesired effects on the usability of the passive exoskeletons, like discomfort, unnecessary weight of the passive exoskeleton, difficulty in operation, restricted range of motion of the joints supported, and the unaffordability of these exoskeletons by the workers. Passive exoskeletons were reported to have a range of positive effects, like reducing muscle effort and improving the endurance of the workers. The study concluded that there needs to be sufficient research on real construction workers in a real construction environment to convince the workers and managers to accept passive exoskeletons. To improve the usability of passive exoskeletons, fundamental changes in design are needed through further research so that the exoskeleton can support workers in multitasking rather than a single function. They also need to become more affordable, and the other undesired negative effects of passive exoskeletons should also be addressed.

Keywords

Acknowledgement

This research study was supported by the BRE Research Incentive Scheme (P0046575) from Hong Kong Polytechnic University.

References

  1. S.T. Bennett, P.G. Adamczyk, F. Dai, M. Wehner, D. Veeramani, Z. Zhu, Field-based assessment of joint motions in construction tasks with and without exoskeletons in support of worker-exoskeleton partnership modeling and simulation, 2022 Winter Simulation Conference (WSC), IEEE, 2022, pp. 2463-2474.
  2. Z. Zhu, A. Dutta, F. Dai, Exoskeletons for manual material handling-A review and implication for construction applications, Automation in Construction 122 (2021) 103493.
  3. M.F. Antwi-Afari, H. Li, S. Anwer, D. Li, Y. Yu, H.-Y. Mi, I.Y. Wuni, Assessment of a passive exoskeleton system on spinal biomechanics and subjective responses during manual repetitive handling tasks among construction workers, Safety science 142 (2021) 105382.
  4. N.J. Gonsalves, O.O. Ogunseiju, A.A. Akanmu, C.A. Nnaji, Assessment of a passive wearable robot for reducing low back disorders during rebar work, J. Inf. Technol. Constr. 26(2021) (2021) 936-952.
  5. M.P. De Looze, T. Bosch, F. Krause, K.S. Stadler, L.W. O'sullivan, Exoskeletons for industrial application and their potential effects on physical work load, Ergonomics 59(5) (2016) 671-681.
  6. T. Bosch, J. van Eck, K. Knitel, M. de Looze, The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work, Applied ergonomics 54 (2016) 212-217.
  7. A.S. Koopman, I. Kingma, G.S. Faber, M.P. de Looze, J.H. van Dieen, Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks, Journal of biomechanics 83 (2019) 97-103.
  8. S. Kim, S. Madinei, M.M. Alemi, D. Srinivasan, M.A. Nussbaum, Assessing the potential for "undesired" effects of passive back-support exoskeleton use during a simulated manual assembly task: Muscle activity, posture, balance, discomfort, and usability, Applied ergonomics 89 (2020) 103194.
  9. S.T. Bennett, W. Han, D. Mahmud, P.G. Adamczyk, F. Dai, M. Wehner, D. Veeramani, Z. Zhu, Usability and Biomechanical Testing of Passive Exoskeletons for Construction Workers: A Field-Based Pilot Study, Buildings 13(3) (2023) 822.
  10. T. McFarland, S. Fischer, Considerations for industrial use: a systematic review of the impact of active and passive upper limb exoskeletons on physical exposures, IISE Transactions on Occupational Ergonomics and Human Factors 7(3-4) (2019) 322-347.
  11. S. Toxiri, M.B. Naf, M. Lazzaroni, J. Fernandez, M. Sposito, T. Poliero, L. Monica, S. Anastasi, D.G. Caldwell, J. Ortiz, Back-support exoskeletons for occupational use: an overview of technological advances and trends, IISE Transactions on Occupational Ergonomics and Human Factors 7(3-4) (2019) 237-249.
  12. R. Bogue, Exoskeletons-a review of industrial applications, Industrial Robot: An International Journal 45(5) (2018) 585-590.
  13. G. Ashta, S. Finco, D. Battini, A. Persona, Passive Exoskeletons to Enhance Workforce Sustainability: Literature Review and Future Research Agenda, Sustainability 15(9) (2023) 7339.
  14. T. Kermavnar, A.W. de Vries, M.P. de Looze, L.W. O'Sullivan, Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review, Ergonomics 64(6) (2021) 685-711.
  15. J.C. Gillette, S. Saadat, T. Butler, Electromyography-based fatigue assessment of an upper body exoskeleton during automotive assembly, Wearable Technologies 3 (2022) e23.
  16. T. Schmalz, A. Colienne, E. Bywater, L. Fritzsche, C. Gartner, M. Bellmann, S. Reimer, M. Ernst, A passive back-support exoskeleton for manual materials handling: reduction of low back loading and metabolic effort during repetitive lifting, IISE Transactions on Occupational Ergonomics and Human Factors 10(1) (2022) 7-20.
  17. S. Alabdulkarim, S. Kim, M.A. Nussbaum, Effects of exoskeleton design and precision requirements on physical demands and quality in a simulated overhead drilling task, Applied ergonomics 80 (2019) 136-145.
  18. M.T. Picchiotti, E.B. Weston, G.G. Knapik, J.S. Dufour, W.S. Marras, Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine, Applied ergonomics 75 (2019) 1-7.
  19. R.B. Graham, M.J. Agnew, J.M. Stevenson, Effectiveness of an on-body lifting aid at reducing low back physical demands during an automotive assembly task: Assessment of EMG response and user acceptability, Applied ergonomics 40(5) (2009) 936-942.
  20. S. Madinei, M.M. Alemi, S. Kim, D. Srinivasan, M.A. Nussbaum, Biomechanical evaluation of passive back-support exoskeletons in a precision manual assembly task:"Expected" effects on trunk muscle activity, perceived exertion, and task performance, Human factors 62(3) (2020) 441-457.
  21. M.M. Alemi, J. Geissinger, A.A. Simon, S.E. Chang, A.T. Asbeck, A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting, Journal of Electromyography and Kinesiology 47 (2019) 25-34.
  22. M.M. Alemi, S. Madinei, S. Kim, D. Srinivasan, M.A. Nussbaum, Effects of two passive back-support exoskeletons on muscle activity, energy expenditure, and subjective assessments during repetitive lifting, Human factors 62(3) (2020) 458-474.
  23. M. Bar, T. Luger, R. Seibt, M.A. Rieger, B. Steinhilber, Using a passive back exoskeleton during a simulated sorting task: influence on muscle activity, posture, and heart rate, Human Factors (2022) 00187208211073192.
  24. P. Maurice, J. Camernik, D. Gorjan, B. Schirrmeister, J. Bornmann, L. Tagliapietra, C. Latella, D. Pucci, L. Fritzsche, S. Ivaldi, Evaluation of PAEXO, a novel passive exoskeleton for overhead work, Computer Methods in Biomechanics and Biomedical Engineering 22(sup1) (2019) S448-S450.
  25. G. Garcia, P.G. Arauz, I. Alvarez, N. Encalada, S. Vega, B.J. Martin, Impact of a passive upper-body exoskeleton on muscle activity, heart rate and discomfort during a carrying task, Plos one 18(6) (2023) e0287588.
  26. S. De Bock, J. Ghillebert, R. Govaerts, S.A. Elprama, U. Marusic, B. Serrien, A. Jacobs, J. Geeroms, R. Meeusen, K. De Pauw, Passive shoulder exoskeletons: More effective in the lab than in the field?, IEEE Transactions on Neural Systems and Rehabilitation Engineering 29 (2020) 173-183.
  27. M. Schalk, I. Schalk, T. Bauernhansl, J. Siegert, U. Schneider, Investigation of Possible Effects of Wearing Exoskeletons during Welding on Heart Rate, Physiologia 2(3) (2022) 94-108.
  28. B.H. Whitfield, P.A. Costigan, J.M. Stevenson, C.L. Smallman, Effect of an on-body ergonomic aid on oxygen consumption during a repetitive lifting task, International Journal of Industrial Ergonomics 44(1) (2014) 39-44.
  29. X. Qu, C. Qu, T. Ma, P. Yin, N. Zhao, Y. Xia, S. Qu, Effects of an industrial passive assistive exoskeleton on muscle activity, oxygen consumption and subjective responses during lifting tasks, Plos one 16(1) (2021) e0245629.
  30. P. Maurice, J. Camernik, D. Gorjan, B. Schirrmeister, J. Bornmann, L. Tagliapietra, C. Latella, D. Pucci, L. Fritzsche, S. Ivaldi, Objective and subjective effects of a passive exoskeleton on overhead work, IEEE Transactions on Neural Systems and Rehabilitation Engineering 28(1) (2019) 152-164.
  31. A.A. Simon, M.M. Alemi, A.T. Asbeck, Kinematic effects of a passive lift assistive exoskeleton, Journal of Biomechanics 120 (2021) 110317.
  32. S. Baltrusch, J. Van Dieen, A.S. Koopman, M. Naf, C. Rodriguez-Guerrero, J. Babic, H. Houdijk, SPEXOR passive spinal exoskeleton decreases metabolic cost during symmetric repetitive lifting, European Journal of Applied Physiology 120(2) (2020) 401-412.
  33. T. Luger, R. Seibt, T.J. Cobb, M.A. Rieger, B. Steinhilber, Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort, Applied Ergonomics 80 (2019) 152-160.
  34. A.S. Koopman, M. Naf, S.J. Baltrusch, I. Kingma, C. Rodriguez-Guerrero, J. Babic, M.P. de Looze, J.H. van Dieen, Biomechanical evaluation of a new passive back support exoskeleton, Journal of Biomechanics 105 (2020) 109795.
  35. O. Ogunseiju, J. Olayiwola, A. Akanmu, O.A. Olatunji, Evaluation of postural-assist exoskeleton for manual material handling, Engineering, Construction and Architectural Management 29(3) (2022) 1358-1375.
  36. A. de Vries, S. Baltrusch, M. de Looze, Field study on the use and acceptance of an arm support exoskeleton in plastering, Ergonomics (2022) 1-11.
  37. N.J. Gonsalves, A. Yusuf, O. Ogunseiju, A. Akanmu, Evaluation of concrete workers' interaction with a passive back-support exoskeleton, Engineering, Construction and Architectural Management (2023).
  38. I. Okpala, C. Nnaji, O. Ogunseiju, A. Akanmu, Assessing the role of wearable robotics in the construction industry: Potential safety benefits, opportunities, and implementation barriers, Automation and robotics in the architecture, engineering, and construction industry (2022) 165-180.
  39. S. Spada, L. Ghibaudo, S. Gilotta, L. Gastaldi, M.P. Cavatorta, Analysis of exoskeleton introduction in industrial reality: main issues and EAWS risk assessment, Advances in Physical Ergonomics and Human Factors: Proceedings of the AHFE 2017 International Conference on Physical Ergonomics and Human Factors, July 17-21, 2017, The Westin Bonaventure Hotel, Los Angeles, California, USA 8, Springer, 2018, pp. 236-244.
  40. S. Kim, M.A. Nussbaum, M.I.M. Esfahani, M.M. Alemi, B. Jia, E. Rashedi, Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II-"Unexpected" effects on shoulder motion, balance, and spine loading, Applied ergonomics 70 (2018) 323-330.
  41. J.-H. Park, S. Kim, M.A. Nussbaum, D. Srinivasan, Effects of back-support exoskeleton use on gait performance and stability during level walking, Gait & Posture 92 (2022) 181-190.
  42. M. Gorsic, Y. Song, B. Dai, D. Novak, Evaluation of the HeroWear Apex back-assist exosuit during multiple brief tasks, Journal of Biomechanics 126 (2021) 110620.
  43. M.B. Naf, A.S. Koopman, S. Baltrusch, C. Rodriguez-Guerrero, B. Vanderborght, D. Lefeber, Passive back support exoskeleton improves range of motion using flexible beams, Frontiers in Robotics and AI 5 (2018) 72.
  44. A. Ali, V. Fontanari, W. Schmoelz, S.K. Agrawal, Systematic review of back-support exoskeletons and soft robotic suits, Frontiers in bioengineering and biotechnology 9 (2021) 765257.
  45. U.L. Erezuma, M.Z. Amilibia, A.E. Elorza, C. Cortes, J. Irazusta, A. Rodriguez-Larrad, A Statistical Parametric Mapping Analysis Approach for the Evaluation of a Passive Back Support Exoskeleton on Mechanical Loading During a Simulated Patient Transfer Task, Journal of Applied Biomechanics 39(1) (2023) 22-33.
  46. K. Junius, M. Degelaen, N. Lefeber, E. Swinnen, B. Vanderborght, D. Lefeber, Bilateral, misalignment-compensating, full-DOF hip exoskeleton: design and kinematic validation, Applied bionics and biomechanics 2017 (2017).
  47. Y.-K. Kong, J.H. Kim, H.-H. Shim, J.-W. Shim, S.-S. Park, K.-H. Choi, Efficacy of passive upper-limb exoskeletons in reducing musculoskeletal load associated with overhead tasks, Applied Ergonomics 109 (2023) 103965.
  48. D. Mahmud, S.T. Bennett, Z. Zhu, P.G. Adamczyk, M. Wehner, D. Veeramani, F. Dai, Identifying Facilitators, Barriers, and Potential Solutions of Adopting Exoskeletons and Exosuits in Construction Workplaces, Sensors 22(24) (2022) 9987.