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Abstract: A large number of construction accidents are caused by workers' unsafe behavior under excessive 

workload. Despite the demonstrated effectiveness and advantages of current portable electroencephalogram (EEG) 

devices in workload monitoring, accurate data acquisition remains challenging due to motion artifacts in dynamic 

environments. Consequently, most current research is limited to static conditions, thus restricting its application 

to construction tasks that inherently involve bodily movements. In this study, an innovative signal filtering 

framework is introduced that employs the principles of adaptive filtering to integrate acceleration signals 

containing motion information for the correction of motion artifacts in EEG signals. The experimental results 

demonstrate that this approach effectively eliminates motion-induced artifacts in EEG signals, thereby 

improving the preprocessing of hybrid kinematic-EEG signals acquired during bodily and muscular movements. 

By enhancing signal quality and reliability, this preprocessing framework aims to broaden the application of 

portable EEG devices for real-time workload monitoring among construction workers. This advancement is 

expected to enhance the practicality of EEG in construction safety management and ultimately contribute to safer 

construction practices. 
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1. INTRODUCTION 

A large number of construction safety accidents are induced by workers’ unsafe behaviors [1]. 

Numerous studies suggest a significant correlation between physical or mental workloads and safety 

performance [2-4]. It is crucial to establish a real-time monitoring mechanism that enables the early 

detection of excessive workload in construction workers. Neuroscientists have demonstrated that EEG 

signals exhibit characteristics indicative of both physical and mental workload [5]. Contemporary 

portable EEG devices facilitate the real-time, non-invasive collection of these signals through wearable 

technology. Consequently, numerous studies have been conducted to establish quantitative workload 

models based on EEG analysis [6].  

However, the technical limitations of portable EEG devices pose a significant challenge in collecting 

accurate EEG data in dynamic scenarios involving physical exertion, as motion artifacts seriously 

interfere with the signal quality [7]. Hence, the majority of EEG experiments conducted in research 

settings are inherently static, emphasizing the crucial need for participants to minimize bodily 

movements, particularly those involving the head, throughout the experimental procedures. However, 

due to the complexity of construction tasks, workers are required to perform sustained high-intensity 

construction operations in a dynamically changing environment, necessitating inevitable large-scale 

bodily movements. Under such conditions, the utilize of EEG for real-time monitoring of workers' 

workload levels must take into account the crucial issue of motion artifacts contaminating the signals 

acquired by portable EEG devices. Therefore, it is imperative to adopt a new signal processing 

framework that incorporates motion artifact correction and feature extraction. 

The primary objective of this study is to explore effective correction methods for the aforementioned 

motion artifacts, thereby expanding the application scenarios of portable EEG devices to allow for real-
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time collection of EEG signals from construction workers. At this point, , it aims to provide a 

preliminary signal preprocessing framework for future workload feature extraction and model 

establishment, further enhancing the practicality of EEG in serving the safety management of the 

construction industry. 

2. LITERATURE REVIEW 

2.1. Workload and safety performance  

Although there is currently no unified definition, in most cases, workload is defined as the portion of 

an individual's limited capacity that is actually required by task demands [8]. Workload level can vary 

depending on the nature of the job, the complexity of the tasks involved, and the individual's capabilities 

and training. Theories such as the multiple resource theory and the workload capacity model have 

attempted to capture these complexities, emphasizing the interaction between task demands and the 

individual's ability to meet those demands [9]. Early research in this domain has demonstrated that 

excessive workload, either physical or mental, can lead to a range of adverse outcomes. For instance, 

excessive workload has been demonstrated to trigger fatigue, which can significantly impact an 

individual's ability to perform tasks efficiently and safely [10]. Fatigue not only affects physical 

performance but also decreases situational awareness, the ability to perceive and interpret environmental 

cues accurately. Furthermore, excessive workload can compromise vigilance, the sustained attention 

required to detect and respond to hazards in a timely manner [11]. The cumulative effect of these factors 

can significantly undermine an individual's safety performance, leading to errors, accidents, and other 

unsafe outcomes.  

A crucial aspect of workload research is its quantification.  Researchers emphasize that by quantifying 

workload, precise measurements can be obtained, facilitating detailed analyses and subsequent 

interventions. The objective assessment of workload levels can be quantified to identify overloaded 

workers. This information can then be used to redesign tasks, improve work processes, and provide 

appropriate training to mitigate workload-related risks. 

In conclusion, workload quantification is a critical tool in enhancing safety performance. By 

understanding and managing workload effectively, organizations can create safer work environments, 

reduce accidents, and improve overall performance. Future research in this area should focus on 

developing more accurate and practical methods for workload quantification, as well as exploring the 

role of workload in different industries and contexts. 

2.2. EEG and workload assessment  

Prior to the physiological monitoring tools, self-assessment questionnaires are widely employed for 

workload assessment. However, these questionnaires are often limited by subjects' self-knowledge, 

resulting in inaccurate assessments for tasks that exceeded their actual energy expenditure. Furthermore, 

this method exists a time lag evitably. Despite researchers' diligent efforts to minimize the temporal gap 

between task completion and self-assessment, biases introduced by subjects' short-term memory decay 

persists [12]. Commonly used physiological monitoring methods for workload assessment include 

electrocardiogram (ECG), heart rate, eye movement, functional near - infrared spectroscopy (FNIRS), 

and EEG, etc. Among them, EEG has been widely used as a workload measurement due to the gradual 

development of its device portability [13]. However, the signal acquisition procedure of portable EEG 

equipment is easily affected by artifacts related to the movement of the subject [14]. This motion-

induced artifact can significantly impact the accuracy and reliability of recorded EEG signals. To 

mitigate this challenge, existing experimental protocols typically instruct subjects to minimize their 

body movements during EEG recordings. For example, in commonly used stationary experiments, 

construction industry researchers often select the experimental material in advance and ask subjects to 

sit in front of a monitor and provide feedback on their decision-making via keyboard or mouse clicks. 

However, such constraints may lead to simplified or inadequate simulations of real-world working 

conditions. Consequently, the findings from these controlled experiments often have limited 

translational value in practical engineering settings. To bridge this research gap, it is imperative to 

develop and adopt effective motion artifact correction methods, thereby expanding the range of 

applicable scenarios for portable EEG equipment. 

2.3. Artifact removal techniques in EEG signal processing 
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EEG artifacts, originating from diverse sources and broadly categorized as external or internal, are 

widely distributed across time and frequency domains [15]. Some common artifact elimination methods 

are shown in Table 1. Band-pass filters allow specific frequency bands to pass through while blocking 

other frequency bands. They are widely used in signal processing applications to isolate and extract 

desired frequency components from complex signal mixtures. Common physiological artifacts in EEG, 

including cardiac-related potentials, skin potential drift, and eye movement artifacts, primarily reside in 

the low-frequency range [16]. To mitigate these artifacts, high-pass filtering is commonly employed to 

eliminate low-frequency components, and bandpass filters with different parameters can also be used to 

effectively remove DC offsets and suppress powerline interference signals. However, bandpass filters 

are ineffective in eliminating signal artifacts that induce complex effects across multiple time and 

frequency domains. Consequently, numerous artifact removal techniques, often incorporating 

psychological research insights and signal processing principles, have been developed. Frameworks 

base on empirical mode decomposition (EMD), independent component analysis (ICA), principal 

component analysis (PCA), and combinations of these approaches, are commonly used. While 

satisfactory results are often achieved in static experiments, particularly with the widespread integration 

of ICA into EEG signal processing toolkits, these methods often encounter challenges in dynamic 

experiments due to the evolving nature of the signals [17]. 
 

Table 1. Common artifact elimination methods and applications 

 

Method Application Principle 

Independent 

Component 

Analysis (ICA) 

Eye movement artifacts, 

muscle activity artifacts, 

heartbeat artifacts, and other 

physiological artifacts. 

ICA decomposes the EEG signal into independent 

components. Artifactual components can then be 

identified and removed based on their characteristic 

features, such as high amplitude or frequency 

content. 

Notch Filtering 
Electrical noise, especially 

power line interference. 

Notch filters remove specific frequencies from the 

EEG signal, typically the frequency of the power line 

(e.g., 50 Hz or 60 Hz) to reduce interference. 

Artifact Subtraction 

Eye movement artifacts 

(EOG), heartbeat artifacts 

(ECG). 

Artifactual signals, such as EOG or ECG, are 

recorded simultaneously with the EEG. These signals 

are then subtracted from the EEG to reduce the 

corresponding artifacts. 

High-Pass Filtering 

Muscle activity artifacts, slow 

drifts, and other low-

frequency noise. 

High-pass filters attenuate low-frequency 

components of the EEG signal, reducing artifacts 

caused by slow drifts or muscle activity. 

Reference 

Electrode 

Standardization 

Technique (REST) 

Reducing artifacts caused by 

poor electrode contact or 

uneven distribution of 

electrodes. 

REST re-references the EEG data to a virtual 

reference electrode created by combining all other 

electrodes, reducing the impact of local artifacts. 

Regression-Based 

Artifact Correction 

Poor electrode contact, 

movement artifacts, or other 

sources of interference. 

Regression analysis is used to model the relationship 

between the artifact and the EEG signal. The artifact 

is then predicted and subtracted from the EEG to 

correct for its influence. 

3. RESEARCH METHODOLOGY 

This study introduces a novel method for the mitigation of motion artifacts in EEG signals. The 

approach utilizes adaptive filtering techniques and incorporates information from an inertial 

measurement unit to accurately estimate and cancel out motion-induced noise. In contrast to traditional 

bandpass filtering, adaptive filtering does not rely on fixed parameters or statistical characteristics of 

the signal. Instead, it dynamically adjusts its transmission function based on the characteristics of the 

input signal and optimizes the output signal by minimizing the error between the desired signal and the 

actual output signal, thus provides superior adaptability to changing motion artifacts. The widely used 
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least mean squares algorithm is employed to optimize filter coefficients, minimizing the mean squared 

error between the reference and output signals, thereby enhancing artifact removal. The filter is designed 

to establish a precise mapping between motion sensor data and the EEG signal space, enabling the 

subtraction of motion-related artifacts from the raw EEG data. This enhanced method aims to improve 

the quality and reliability of EEG recordings, particularly in dynamic environments. The basic structure 

of the adaptive filter is shown in Figure 1. 

In this study, a portable EEG device and the EPOC+ manufactured by Emotiv is used to acquire the 

real-time EEG signals from 30 subjects in both sitting and walking states. The device is configured to 

record 14-channel EEG signals, following the international 10-20 system, including AF3, F7, F3, FC5, 

T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. The movement information of the portable EEG device 

is recorded by the three-axis acceleration sensor, synchronized with the real-time EEG signals, and used 

for further adaptive motion artifact correction. Subsequently, the pre-processed signal underwent 

Wavelet Packet Decomposition (WPD), and the inherent power was computed using wavelet packet 

coefficients for further analysis. 

 

 
 

Figure 1. The basic structure of adaptive motion artifact elimination filter 

 

4. RESULT AND DISCUSSION 

To establish a baseline comparison with the walking state, EEG signals are collected from each 

subject while they are seated, serving as a control condition. During this sitting state, the overall 

amplitude of the EEG signals remain low. The signal value of the subject 1 in the given state is presented 

in Figure 2. 

 
 

Figure 2. Signal value after artifact correction in sitting state from subject 1 
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After motion artifact correction, the amplitude of the signal is relatively low. However, the peak value 

of the EEG signal in the time domain is significantly higher for walking subjects compared to those in 

a sitting state. Our time-frequency analysis further reveals a relationship between gait patterns and the 

time-frequency characteristics of the EEG, despite the absence of a direct significant correlation between 

the signal amplitude and the accelerometer signal during walking. This observed similarity underpins 

the principle of adaptive filtering. Figure 3 shows the signal value of the identical subject during the 

walking state. 

 
Figure 3. Signal value after artifact correction in sitting state from subject 1 

 

A comparison with the acceleration signal reveals that the peak value of the EEG signal and the peak 

value of the acceleration signal emerged nearly concurrently, coinciding with the gait cycle of the 

subject. This observation suggests that, despite achieving some degree of effectiveness, the motion 

artifact correction method employed may not be sufficient in eliminating all motion-related artifacts.  

 

 
Figure 4. Comparison of band power between sitting and walking state 

 

Based on this, the pre-processed signal undergoes WPD, resulting in a division encompassing bands 

1 to 8, ranging from low to high frequencies. Figure 4 shows the power values of each subband of 30 

experimental subjects in the sitting and walking states respectively. Subsequently, the sub-band power 

Subject 

   Band power  (10 μV )

Sitting

Walking

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Band 1

Band 2

Band 3

Band 4

Band 5

Band 6

Band 7

Band 8

3 2

AF3

AF4

AF3

AF4

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

80 

85 

90 

95 

100 

906



 

is computed. Upon preliminary analysis of the results, it becomes evident that, in comparison to the 

sitting state, the energy within multiple frequency bands is elevated during walking. Notably, the degree 

of activation among different subjects within specific frequency bands exhibits variance, yet the 

enhancement of energy is particularly pronounced in the low-frequency region. 

4. CONCLUSION AND RECOMMENDATIONS 

EEG data recorded during movement is likely to contain substantial motion artifacts exhibiting 

variations based on speed, subject, and channel, which are not sensitive to traditional signal processing 

methods. This study introduces a new signal filtering framework to efficiently target and eliminate 

motion-induced artifacts. The aim is to refine the preprocessing methodological framework for hybrid 

kinematic-EEG signals, acquired using a portable EEG device during tasks involving bodily and 

muscular movements executed by the subject. This enhanced preprocessing step aims to enhance signal 

quality and improve the reliability of subsequent data analysis.  

Despite achieving some results, the current method remains incapable of completely eliminating 

motion artifacts from the signal. Consequently, to harness the full potential of EEG technology in 

construction production environments, it is imperative to further refine its artifact correction techniques. 

Additionally, the exploration of more efficient methods for extracting such EEG features is crucial. This 

will facilitate the establishment of an effective workload model that can be extrapolated to real-world 

construction settings, thereby optimizing the utilization of EEG technology in this domain. 
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