References
- J. Park, K. Kim, Y.K. Cho, Framework of Automated Construction-Safety Monitoring Using Cloud-Enabled BIM and BLE Mobile Tracking Sensors, J. Constr. Eng. Manage. 143 (2017) 05016019. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001223.
- P. Mitropoulos, T.S. Abdelhamid, G.A. Howell, Systems Model of Construction Accident Causation, J. Constr. Eng. Manage. 131 (2005) 816-825. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:7(816).
- S. Taneja, B. Akinci, J.H. Garrett, L. Soibelman, E. Ergen, A. Pradhan, P. Tang, M. Berges, G. Atasoy, X. Liu, S.M. Shahandashti, E.B. Anil, Sensing and Field Data Capture for Construction and Facility Operations, J. Constr. Eng. Manage. 137 (2011) 870-881. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000332.
- J. Seo, S. Han, S. Lee, H. Kim, Computer vision techniques for construction safety and health monitoring, Advanced Engineering Informatics 29 (2015) 239-251. https://doi.org/10.1016/j.aei.2015.02.001.
- Y. Liu, P. Sun, N. Wergeles, Y. Shang, A survey and performance evaluation of deep learning methods for small object detection, Expert Systems with Applications 172 (2021) 114602. https://doi.org/10.1016/j.eswa.2021.114602.
- F. Fui-Hoon Nah, R. Zheng, J. Cai, K. Siau, L. Chen, Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration, Journal of Information Technology Case and Application Research 25 (2023) 277-304. https://doi.org/10.1080/15228053.2023.2233814.
- Y. Ge, J. Xu, B.N. Zhao, N. Joshi, L. Itti, V. Vineet, Beyond Generation: Harnessing Text to Image Models for Object Detection and Segmentation, (2023). https://doi.org/10.48550/ARXIV.2309.05956.
- A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, Deep Learning for Computer Vision: A Brief Review, Computational Intelligence and Neuroscience 2018 (2018) 1-13. https://doi.org/10.1155/2018/7068349.
- B. Yang, B. Zhang, Q. Zhang, Z. Wang, M. Dong, T. Fang, Automatic detection of falling hazard from surveillance videos based on computer vision and building information modeling, Structure and Infrastructure Engineering 18 (2022) 1049-1063. https://doi.org/10.1080/15732479.2022.2039217.
- B.E. Mneymneh, M. Abbas, H. Khoury, Automated Hardhat Detection for Construction Safety Applications, Procedia Engineering 196 (2017) 895-902. https://doi.org/10.1016/j.proeng.2017.08.022.
- T. Kong, W. Fang, P.E.D. Love, H. Luo, S. Xu, H. Li, Computer vision and long short-term memory: Learning to predict unsafe behaviour in construction, Advanced Engineering Informatics 50 (2021) 101400. https://doi.org/10.1016/j.aei.2021.101400.
- D.A. Van Dyk, X.-L. Meng, The Art of Data Augmentation, Journal of Computational and Graphical Statistics 10 (2001) 1-50. https://doi.org/10.1198/10618600152418584.
- A. Mumuni, F. Mumuni, Data augmentation: A comprehensive survey of modern approaches, Array 16 (2022) 100258. https://doi.org/10.1016/j.array.2022.100258.
- S. Bang, F. Baek, S. Park, W. Kim, H. Kim, Image augmentation to improve construction resource detection using generative adversarial networks, cut-and-paste, and image transformation techniques, Automation in Construction 115 (2020) 103198. https://doi.org/10.1016/j.autcon.2020.103198.
- K.M. Rashid, J. Louis, Times-series data augmentation and deep learning for construction equipment activity recognition, Advanced Engineering Informatics 42 (2019) 100944. https://doi.org/10.1016/j.aei.2019.100944.
- S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, F. Shen, Image Data Augmentation for Deep Learning: A Survey, (2022). https://doi.org/10.48550/ARXIV.2204.08610.
- A. Biswas, N. Md Abdullah Al, A. Imran, A.T. Sejuty, F. Fairooz, S. Puppala, S. Talukder, Generative Adversarial Networks for Data Augmentation, in: B. Zheng, S. Andrei, M.K. Sarker, K.D. Gupta (Eds.), Data Driven Approaches on Medical Imaging, Springer Nature Switzerland, Cham, 2023: pp. 159-177. https://doi.org/10.1007/978-3-031-47772-0_8.
- H. Ohno, Auto-encoder-based generative models for data augmentation on regression problems, Soft Comput 24 (2020) 7999-8009. https://doi.org/10.1007/s00500-019-04094-0.
- D. Bai̇Doo-Anu, L. Owusu Ansah, Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning, Journal of AI 7 (2023) 52-62. https://doi.org/10.61969/jai.1337500.
- Z.M. Albaghajati, D.M. Bettaieb, R.B. Malek, Exploring text-to-image application in architectural design: insights and implications, Archit. Struct. Constr. 3 (2023) 475-497. https://doi.org/10.1007/s44150-023-00103-x.
- C. Cao, Z. Ding, G.-G. Lee, J. Jiao, J. Lin, X. Zhai, Elucidating STEM Concepts through Generative AI: A Multi-modal Exploration of Analogical Reasoning, (2023). https://doi.org/10.48550/ARXIV.2308.10454.
- L. Reynolds, K. McDonell, Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm, in: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, ACM, Yokohama Japan, 2021: pp. 1-7. https://doi.org/10.1145/3411763.3451760.
- A. Borji, Generated Faces in the Wild: Quantitative Comparison of Stable Diffusion, Midjourney and DALL-E 2, (2022). https://doi.org/10.48550/ARXIV.2210.00586.
- J. Terven, D. Cordova-Esparza, A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS, (2023). https://doi.org/10.48550/ARXIV.2304.00501.
- T. Chen, Q. Zeng, Research on Bubble Detection Based on Improved YOLOv8n, IEEE Access 12 (2024) 9659-9668. https://doi.org/10.1109/ACCESS.2024.3353196.
- Y. Huang, W. Tan, L. Li, L. Wu, WFRE-YOLOv8s: A New Type of Defect Detector for Steel Surfaces, Coatings 13 (2023) 2011. https://doi.org/10.3390/coatings13122011.