
ICCEPM 2024 

The 10th International Conference on Construction Engineering and Project 

Management 
Jul. 29-Aug.1, 2024, Sapporo 

 

Q-learning for tunnel excavation schedule 

 

Shuhan YANG1, Ke DAI1, Zhihao REN1*, Jung In KIM1, Bin XUE2, Dan WANG2, 

Wooyong JUNG3 

 
1 Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 

SAR, E-mail address: shuhayang5-c@my.cityu.edu.hk; kedai2-c@my.cityu.edu.hk; 

z.ren@my.cityu.edu.hk; jungikim@cityu.edu.hk 
2 School of Public Policy and Administration, Chongqing University, China, E-mail address: 

bxue@cqu.edu.cn; wangxiaodan@cqu.edu.cn 
3 Department of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate 

School, South Korea, E-mail address: trustjung@gmail.com 

 

Abstract: Construction planners for hard rock tunnel projects often encounter practical 

challenges caused by inherent uncertainties in ground conditions and resource constraints. 

Therefore, planners cannot rapidly generate optimal excavation schedules for the shortest 

project durations with a given equipment fleet by considering the uncertainties in ground 

conditions. Although some schedule optimization methods exist, they are not tailored for 

resource-constrained hard rock tunnel projects. To overcome these limitations, the authors 

specified a formal Q-learning-based schedule optimization methodology for resource-

constrained hard rock tunnel projects. States are defined according to the locations of tunnel 

faces under excavation. Actions consist of multiple and comprehensive heuristic-based rules, 

which are efficient methods for resource allocation. Rewards are the time intervals required 

between current states and next states. After that, the methodology is validated using a case 

study. The generated Q tables indicate (1) best actions under different states and (2) the shortest 

remaining durations when the project starts from specific (state, action) pairs. The results 

demonstrate that the optimal schedules can be obtained by applying the proposed methodology. 

Furthermore, it is beneficial for planners to rapidly assign optimal rules for each state under 

one ground condition scenario. The results further show the potential to consider the 

uncertainties in ground conditions using the information of possible ground condition scenarios 

provided. 
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1. INTRODUCTION 

In hard rock tunnel construction projects, planners face practical challenges due to the 

constraints imposed by limited resources and the inherent uncertainties in ground conditions, 

which may lead to cost overruns, schedule delays, and associated risks [1]. Thus, construction 

planners (CPs) are required to generate optimal schedules that not only accommodate the 

uncertainties in ground conditions and resource constraints, but also ensure efficient resource 

allocation.  

Some studies have been carried out on the resource-constrained project scheduling problems 

[2][3][4][5][6], and heuristic-based policies are proven to be the efficient solutions for dealing 

with such problems [2][7]. Yet optimal policies may differ significantly among different 

projects [4][5]. Similarly, optimal policies can vary with project states in the process of 

construction. CPs are expected to identify a series of optimal policies assigned for each state, 

defined as a schedule for tunnel construction projects with resource constraints and uncertain 

ground conditions. 

Some construction process optimization methods exist for linear construction projects, 

including linear programming (LP), integer programming (IP), dynamic programming (DP), 

genetic algorithm (GA), and simulation-based optimization [8][9][10][11]. However, these 

methods are not tailored for hard rock tunnel projects while considering uncertainties in ground 

conditions. A DP-based method has been developed to enable CPs to automatically generate 

excavation schedules in preconstruction and construction [12], but it fails to consider the impact 

of resource constraints. In addition, all of the mentioned models have limitations on selecting 

an optimal policy while considering multiple and comprehensive policies for different project 

states. Q-learning, a popular reinforcement learning (RL) approach, has the capacity to indicate 

optimal policies to guide agents’ actions in given states. However, RL methods have not been 

tailored for resource-constrained tunnel construction scheduling problems. Therefore, the main 

practical problem is that CPs cannot yet rapidly generate excavation schedules with minimum 

durations (i.e., assign an optimal policy for each state) with a given equipment fleet while taking 

uncertain ground conditions into consideration. 

This paper first reviews the existing studies to identify the research gap. A Q-learning-based 

construction process optimization method is then proposed and validated by a case study. 

2. POINTS OF DEPARTURE 

This section includes reviews of three aspects: (1) some common resource allocation policies, 

(2) existing construction process optimization methods, and (3) RL for scheduling. Our research 

question and objectives are then presented. 

Resource allocation policies are efficient tools for dealing with the resource-constrained 

project scheduling problems. Various policies have been proposed with different emphases on 

resource allocation (e.g., activity duration, resource requirements, resource waiting time). They 

include but are not limited to First Come First Served (FCFS), Late Come First Served (LCFS), 

Short Operation First (SOF), Maximum Operation First (MOF), Minimum Total Work Content 

(MINTWK), Maximum Total Work Content (MAXTWK), etc. [2][3][4][5][6][7]. Because the 

optimal policies can change from one project state to another, it would be more comprehensive 

to include more policies to obtain shorter total project durations. 

Some construction process optimization methods have been applied to linear projects. An IP 

model has been applied to a comprehensive earthmoving system in road construction 

optimization to minimize costs while considering earthwork deadlines [13]. In addition, several 

DP-based optimization methods have been developed for scheduling linear construction 

projects [14][15]. A practical optimization method has been developed to analyze time–cost 

trade-off by formalizing a GA procedure [16]. A simulation-based optimization model has been 

developed to optimize fleet selection for earthmoving operations by taking into account linear 

indirect project costs [17]. In addition, under given resource constraints for general construction 
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projects, many researchers have developed optimization methods to determine optimal activity 

start times [18][19][20]. However, they are not tailored for hard rock tunnels with the 

consideration of uncertain ground conditions. A schedule generation and estimation 

methodology based on the DP method has been developed for hard rock tunnel projects, yet it 

failed to consider resource constraints [12]. In addition, all of them have limitations on the 

selection of optimal policies at decision-making points among multiple and comprehensive 

policies for different states. 

RL has been widely used in production scheduling, because the intelligent agent in RL can 

provide a series of decisions (e.g., activity sequencing, resource allocation) after learning [21]. 

Recently, RL has also been applied in civil engineering, especially for complex problems [21]. 

For example, an n-step Q-network traffic signal controller has been trained by applying RL with 

function approximation to reduce vehicle queues [22]. An RL-based framework for strategy 

development for conventional tunneling is presented to excavate the rockmass in an optimal 

way from different excavation sequences [23]. A practical control framework for a building 

energy model has been proposed based on deep RL to reduce heat demand [24]. An RL-based 

energy management system has also been proposed to maximize the profit in residential energy 

sales [25]. Although RL shows the capacity to provide better solutions at each decision-making 

point, act with the environment, and rapidly find optimal actions when applied in similar 

environments, it has not been tailored for the construction scheduling problem for resource-

constrained hard rock tunnels by considering uncertain ground conditions. 

Our research question is as follows: How can construction planners formally and rapidly 

generate optimal schedules for resource-constrained hard rock tunnel projects by using the 

Q-learning method with multiple resource allocation policies involved? The research 

objectives of this paper are to (1) formalize a methodology for the schedule optimization of 

hard rock tunnel projects while considering uncertainties in ground conditions and resource 

constraints and (2) compare the schedule optimization results after Q-learning (with multiple 

policies involved) and the schedule simulation results under all involved single policies. 

3. Q-LEARNING-BASED SCHEDULE OPTIMIZATION METHODOLOGY 

FOR RESOURCE-CONSTRAINED HARD ROCK TUNNEL 

The research team adapts a Q-learning algorithm to solve the schedule optimization problem 

of resource-constrained hard rock tunnel projects. The definition of Q-learning is shown as 

Formula (1), where   and 


 denote learning rate and discount factor respectively [26]. 

( ) ( ) ( ) ( )1 1, , max , ,t t t t t t t t
a

Q S A Q S A R Q S a Q S A + +
  + + −
 

      (1) 

The specification of the Q-learning algorithm in hard rock tunnel projects is shown in Figure 

1. The environment in the tunnel scheduling problem should relate to the construction progress. 

To consider the uncertainties in ground conditions, multiple reference ground condition (GC) 

scenarios will be provided. A representative GC scenario will be generated based on the 

scenarios, which will be another part of the environment for Q-learning. Before learning, the 

Q  is required to be initialized. If the states are terminals, the Q values are 0. Otherwise, the Q 

values are initialized to a fixed sufficiently large negative number. The definition of state in this 

specified Q-learning method ought to indicate the current excavation progress. For example, it 

can be a vector consisting of the locations of all under-excavated tunnel faces. During the 

process of Q-learning, for each episode, it starts from the same unexcavated initial state and 

goes through some iterations to update the excavation progress until the construction of the 

entire project is completed. For each iteration at time t , the agent (i.e., CPs) firstly selects an 

action tA  via Ɛ-greedy algorithm to decide whether the current iteration is for exploitation or 

exploration, in which actions are resource allocation policies to deal with the limitations 

brought by resource constraints. With the given state tS  and action tA , the environment will 
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be interacted with, which means the construction progress will be updated. After that, the 

environment will return the new state 1tS +  and corresponding 1tR + , where the reward 1tR +  

equals the negative value of time interval required to move from old to new states. At the end 

of each iteration, the Q  and time are updated. 

 

Figure 1. Specification of Q-learning algorithm for resource-constrained hard rock tunnels 

 

In the specified Q-learning methodology, the Q value of each (state, action) pair after learning 

is expected to represent the minimum remaining time required to finish the entire excavation 

from the current state after taking the action at this moment (expressed as a negative value). 

Therefore, the learning rate and discount factor are both set to 1 in this method. 

After the learning of each episode, a state transition path will be recorded with the 

information of (1) states, (2) actions, and (3) rewards (i.e., time intervals between states). Q 

values of the (state, action) pairs on the path will be updated backward from the terminal state. 

The Q value of a pair will be updated if it is larger than its original value. If the maximum Q 

value of any state becomes larger during the process, the Q values of all prior (state, action) 

pairs, which can lead to this state, also need to be one-step updated (if required). After the 

backward focusing of planning computations, the Q values of all (state, action) pairs can 

indicate the minimum remaining durations to finish all excavations of the entire project from 

the current “state” after taking the corresponding “action” (except for the pairs of which the Q 

values are still the initialized). This method makes the optimization process more efficient. 

4. CASE STUDY 

The research team validated the proposed Q-learning-based schedule optimization 

methodology via a real case, which is a 6km long hard rock tunnel project in Korea. The layout 

of the simplified tunnel structure is shown in Figure 2. It includes 2 main tunnels, each of which 

is cut by a shaft. The total lengths of main tunnel 1, main tunnel 2, and the shaft are 6190m, 

6175m, and 866m, respectively. It is assumed that the main tunnels can be two-way excavated, 

and the shaft can only be one-way excavated. Figure 2 also shows the identifications of the 

tunnel phases (from P1 to P9) assigned to different tunnel sections. After the completion of the 

shaft, the excavation of P2, P3, P6, and P7 can be started. 

There are 5 types of GCs (i.e., very good, good, fair, poor, very poor) and 1 representative 

GC scenario generated via geostatistical method. The excavation method for the project is the 

drilling and blasting method. The advance rates without considering resource constraints in 

very good, good, fair, poor, and very poor GCs are 2.55, 2.32, 2.06, 1.79, and 1.28 meter per 

day, respectively. The project includes 3 zones. Zone 1 covers the construction sites of P1 and 

P5, zone 2 covers P9, P2, P3, P6 and P7, and zone 3 covers P4 and P8. Resources are shared 

among phases in the same zone. Only if the penetration of a main tunnel happens will the related 
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zones be integrated and resources belonging to them be shared together. Three sets of equipment 

are allocated to zones 1, 2, and 3 evenly at the beginning of construction. The advance rates of 

the phases while considering resource constraints are assumed to be known information 

obtained from another paper about schedule evaluation methodology. The process for obtaining 

these advance rates is omitted here because it is not the focus of this paper. 

 

Figure 2. Layout of the simplified tunnel project 

The state is defined as a vector as shown in the equation in function (2), where iloc  denotes 

the longitudinal location (rounded to the nearest integer) of the current tunnel face of iP . The 

initial state is [0, 2202, 2202, 6190, 0, 2188, 2188, 6175, 0]. The terminal states are 
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Five actions (i.e., resource allocation policies) are considered in this case: FCFS, SOF, MOF, 

MINTWK, and MAXTWK. In addition, agents follow the Ɛ-greedy algorithm to take actions, 

where Ɛ is set to 0.4. 

The reward is defined as the time interval moving from the current state to the next state 

(expressed as a negative value). 

There are 1000 episodes in total. In each episode, the excavation progress is updated every 

100 days until the end. In other words, agents need to select policies for every 100-day interval, 

and resources will be allocated under the selected policy in the following 100 days. Table 1 

shows the optimal path found after Q-learning with the information on the current state, optimal 

action, reward, and next state, in which state 1369 is the terminal state of this path. From Table 

1, it can be calculated that the total project duration after Q-learning equals (-1) * accumulated 

rewards (i.e., time intervals between states). Therefore, the total project duration after Q-

learning is 1144.5 days. Table 2 shows the summary of Q-learning results in 11 episodes among 

all 1000 episodes. The Q value in the initial state indicates the minimum remaining duration 

required to finish the construction of entire project. It decreases from 1172.46 to 1144.50 days 

and becomes increasingly stabilized. There are 2205 states in total after all learning. 

Furthermore, the number of states keeps increasing as the process of Q-learning proceeds. 

Around 150 new states will arise every 100 episodes (from episodes 700 to 1000). The 

expansion of the state space is due to the strict definition of state (a 9-dimension vector) to 

distinguish different states. 

 

Table 1. Optimal path found by the Q-learning-based schedule optimization methodology 

Current state Action 

(optimal) 
Reward 

Next 

state 

ID Locations of tunnel faces ID 
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0 [0,2202,2202,6190,0,2188,2188,6175,0] all policies -100 1 

1 [191,2202,2202,6009,189,2188,2188,5983,401] all policies -100 2 

2 [354,2202,2202,5776,340,2188,2188,5756,804] FCFS/MOF -100 3 

3 [491,2104,2309,5576,476,2086,2273,5537,866] MINTWK -100 76 

76 [657,1990,2422,5354,670,1970,2385,5342,866] SOF -100 659 

659 [885,1854,2573,5133,888,1936,2514,5115,866] MAXTWK -100 988 

988 [1109,1709,2733,4922,1108,1921,2660,4903,866] MAXTWK -100 1317 

1317 [1329,1559,2870,4704,1309,1921,2829,4701,866] MINTWK -100 1330 

1330 [1480,1480,3027,4491,1521,1772,2973,4483,866] MINTWK -100 1366 

1366 [1480,1480,3252,4289,1642,1642,3176,4257,866] all policies -100 1367 

1367 [1480,1480,3484,4105,1642,1642,3408,4044,866] all policies -100 1368 

1368 [1480,1480,3713,3894,1642,1642,3643,3843,866] SOF -44.5 1369 

1369 [1480,1480,3808,3808,1642,1642,3740,3740,866] - - - 

 

Table 2. Summary of Q-learning results 

Episode ID Q value under initial state No. States 

1 -1172.46 13 

100 -1159.37 355 

200 -1151.46 605 

300 -1151.03 831 

400 -1151.03 1062 

500 -1150.82 1262 

600 -1144.51 1550 

700 -1144.51 1773 

800 -1144.50 1914 

900 -1144.50 2071 

1000 -1144.50 2205 

 

The result after Q-learning-based schedule optimization is compared with the simulation 

results under 5 single policies (Table 3). The optimized project duration after Q-learning is 

shorter than the simulation results under all 5 single policies. Q-learning shows an advantage 

from 1.39% to 8.15% over them. Especially for FCFS, which is the most commonly used 

resource allocation policy for construction projects, the Q-learning result is 2.38% shorter than 

FCFS. 

 

Table 3. Comparison between Q-learning result and simulation results under single policies 

Single policy 
Q-learning result (day) 

Q-learning vs single 

policy Name Simulation result (day) 

FCFS 1172.46 

1144.50 

2.38% 

SOF 1160.63 1.39% 

MOF 1171.45 2.30% 

MINTWK 1174.42 2.55% 

MAXTWK 1246.06 8.15% 

 

5. CONCLUSIONS AND FUTURE WORKS 

This paper has proposed Q-learning-based schedule optimization methodology for resource-

constrained hard rock tunnel projects by considering uncertainties in ground conditions. In the 

specified Q-learning method, state is defined as a vector to indicate current excavation progress, 

action includes all considered resource allocation policies, and reward is the time interval 

moving from the current state to the next state. Due to the setting of values of the learning rate 

and discount factor, the Q value of each (state, action) pair reflects the minimum remaining 

duration to finish the excavation of the entire project. During the Q-learning process, the 
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backward focusing of planning computations is applied to make the learning more efficient. 

After that, it is validated via a real case study. The optimal path is generated after Q-learning. 

In addition, the Q-learning results show advantages ranging from 1.39% to 8.15% over the 

simulation results under 5 single policies. Specifically, the Q-learning result is 2.38% shorter 

than FCFS, which is the most common resource allocation policy. The proposal of the formal 

Q-learning-based schedule optimization methodology can help CPs rapidly generate excavation 

schedules of minimum durations under a given equipment fleet while considering uncertainties 

in ground conditions and appropriately assign optimal policy for the state with hints from Q 

tables. 

There are still some limitations of this study. It can be observed from the case study that the 

total number of states steadily increases in the process of Q-learning with the number of 

episodes. This finding stems from the relatively strict definition of state in this paper. In reality, 

two highly similar states have really close remaining durations to finish all excavations, yet 

they are identified and treated as 2 independent states in this context. The vast state space can 

lead to many state–action pairs not being sufficiently explored, which may overlook better 

solutions. Therefore, future works will focus on the reduction of the state space and the 

improvement of optimization efficiency (e.g., through function approximation methods). 

ACKNOWLEGEMENTS 

The support of the General Research Fund of the University Grants Committee of Hong 

Kong (#21212019) and City University of Hong Kong (#9239027) is gratefully acknowledged. 

REFERENCES 

[1] C. Paraskevopoulou and A. Benardos, “Assessing the construction cost of Greek 

transportation tunnel projects.,” Tunnelling and Underground Space Technology. vol. 

38, pp. 497–505, 2013. 

[2] I. Kurtulus and E.W. Davis, “Multi-Project Scheduling: Categorization of Heuristic 

Rules Performance.,” Management Science. vol. 28, no. 2, pp. 161–172, 1982. 

[3] S. Tsubakitani and R.F. Deckro, “A heuristic for multi-project scheduling with 

limited resources in the housing industry.,” European Journal of Operational Research. 

vol. 49, no. 1, pp. 80–91, 1990. 

[4] D.M. Tsai and H.N. Chiu, “Two heuristics for scheduling multiple projects with 

resource constraints.,” Construction Management and Economics. vol. 14, no. 4, pp. 

325–340, 1996. 

[5] Y. Wang, Z. He, L.P. Kerkhove, and M. Vanhoucke, “On the performance of priority 

rules for the stochastic resource constrained multi-project scheduling problem.,” 

Computers and Industrial Engineering. vol. 114, no. October, pp. 223–234, 2017. 

[6] H.J. Chen, G. Ding, J. Zhang, and S. Qin, “Research on priority rules for the 

stochastic resource constrained multi-project scheduling problem with new project 

arrival.,” Computers and Industrial Engineering. vol. 137, no. August, p. 106060, 2019. 

[7] P.H. Chen and S.M. Shahandashti, “Hybrid of genetic algorithm and simulated 

annealing for multiple project scheduling with multiple resource constraints.,” 

Automation in Construction. vol. 18, no. 4, pp. 434–443, 2009. 

[8] B. Said, “EARTHWORK ALLOCATIONS WITH LINEAR UNIT COSTS.,” vol. 

114, no. 4, pp. 641–655, 1989. 

[9] M. Marzouk and O. Moselhi, “Multiobjective Optimization of Earthmoving 

Operations.,” Journal of Construction Engineering and Management. vol. 130, no. 1, 

805



pp. 105–113, 2004. 

[10] K. El-Rayes and A. Kandil, “Time-Cost-Quality Trade-Off Analysis for Highway 

Construction.,” Journal of Construction Engineering and Management. vol. 131, no. 4, 

pp. 477–486, 2005. 

[11] P.G. Ipsilandis, “Multiobjective Linear Programming Model for Scheduling Linear 

Repetitive Projects.,” Journal of Construction Engineering and Management. vol. 133, 

no. 6, pp. 417–424, 2007. 

[12] J.I. Kim, M. Fischer, and C. Kam, “Generation and evaluation of excavation 

schedules for hard rock tunnels in preconstruction and construction.,” Automation in 

Construction. vol. 96, no. October, pp. 378–397, 2018. 

[13] A.K.W. Jayawardane and F.C. Harris, “FURTHER DEVELOPMENT OF 

INTEGER PROGRAMMING IN EARTHWORK OPTIMIZATION.,” vol. 116, no. 1, 

pp. 18–34, 1990. 

[14] N.N. Eldin and A.B. Senouci, “Scheduling and control of linear projects.,” 

Canadian journal of civil engineering. vol. 21, no. 2, pp. 219–230, 1994. 

[15] A. Myat, M. Paing, and N.L. Thein, “OPTIMIZING RESOURCE UTILIZATION 

FOR REPETITIVE CONSTRUCTION PROJECTS.,” vol. 4, no. 3, pp. 85–99, 2012. 

[16] T. Hegazy, “Optimization of construction time-cost trade-off analysis using genetic 

algorithms.,” Canadian Journal of Civil Engineering. vol. 26, no. 6, pp. 685–697, 1999. 

[17] A. Alshibani and O. Moselhi, “Fleet selection for earthmoving projects using 

optimization-based simulation.,” Canadian Journal of Civil Engineering. vol. 39, no. 6, 

pp. 619–630, 2012. 

[18] P. Ghoddousi, E. Eshtehardian, S. Jooybanpour, and A. Javanmardi, “Multi-mode 

resource-constrained discrete time-cost-resource optimization in project scheduling 

using non-dominated sorting genetic algorithm.,” Automation in Construction. vol. 30, 

pp. 216–227, 2013. 

[19] L.D. Long and A. Ohsato, “Fuzzy critical chain method for project scheduling 

under resource constraints and uncertainty.,” International Journal of Project 

Management. vol. 26, no. 6, pp. 688–698, 2008. 

[20] M. Lu, H.C. Lam, and F. Dai, “Resource-constrained critical path analysis based 

on discrete event simulation and particle swarm optimization.,” Automation in 

Construction. vol. 17, no. 6, pp. 670–681, 2008. 

[21] N.S. Kedir, S. Somi, A.R. Fayek, and P.H.D. Nguyen, “Hybridization of 

reinforcement learning and agent-based modeling to optimize construction planning 

and scheduling.,” Automation in Construction. vol. 142, no. July, p. 104498, 2022. 

[22] W. Genders and S. Razavi, “Asynchronous n-step Q-learning adaptive traffic 

signal control.,” Journal of Intelligent Transportation Systems: Technology, Planning, 

and Operations. vol. 23, no. 4, pp. 319–331, 2019. 

[23] G.H. Erharter, T.F. Hansen, Z. Liu, and T. Marcher, “Reinforcement learning based 

process optimization and strategy development in conventional tunneling.,” 

Automation in Construction. vol. 127, no. December 2020, p. 103701, 2021. 

[24] Z. Zhang, A. Chong, Y. Pan, C. Zhang, and K.P. Lam, “Whole building energy 

model for HVAC optimal control: A practical framework based on deep reinforcement 

learning.,” Energy and Buildings. vol. 199, pp. 472–490, 2019. 

[25] H. Berlink, N. Kagan, and A.H. Reali Costa, “Intelligent Decision-Making for 

Smart Home Energy Management.,” Journal of Intelligent and Robotic Systems: 

Theory and Applications. vol. 80, pp. 331–354, 2015. 

[26] R.S. Sutton and A.G. Barto, “Reinforcement Learning: An Introduction.,” MIT 

press, 2018. 

 

806




