Acknowledgement
이 논문은 2023 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.RS-2022-00155586, 실세계의 다양한 다운스트림 태스크를 위한 고성능 빅 하이퍼그래프 마이닝 플랫폼 개발(SW 스타랩), No. 2020-0-01373, 인공지능대학원지원(한양대학교), No.2018R1A5A7059549).
References
- Yuxiao Dong et al., Do the Young Live in a "Smaller World" Than the Old? Age-Specific Degrees of Separation in a Large-Scale Mobile Communication Network, arXiv preprint arXiv:1606.07556, 2016.
- Tahleen A Rahman et al., Fairwalk: Towards Fair Graph Embedding, IJCAI, 2019.
- Enyan Dai et al., Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information, WSDM, 2021.
- Yushun Dong et al., Edits: Modeling and mitigating data bias for graph neural networks, The Web Conference, 2022.
- Wang et al., Improving fairness in graph neural networks via mitigating sensitive attribute leakage, KDD, 2022.
- A. Chen et al., Fairness-aware graph neural networks: A survey, arXiv preprint arXiv:2307.03929, 2023.