DOI QR코드

DOI QR Code

Surveys and Evaluation of Recent Network Alignment Methods

최신 네트워크 정렬 방법에 대한 서베이 및 평가

  • Jae-Hwan Lim (Dept. of Computer Science, Hanyang University) ;
  • Dong-Hyuk Seo (Dept. of Computer Science, Hanyang University) ;
  • Sang-Wook Kim (Dept. of Computer Science, Hanyang University)
  • 임재환 (한양대학교 컴퓨터소프트웨어학과) ;
  • 서동혁 (한양대학교 컴퓨터소프트웨어학과) ;
  • 김상욱 (한양대학교 컴퓨터소프트웨어학과)
  • Published : 2024.05.23

Abstract

최근 온라인 소셜 네트워크 플랫폼의 증가에 따라 사용자들은 다양한 서비스를 제공받기 위해 여러 소셜 네트워크 플랫폼에 가입하는 경향이 있다. 네트워크 정렬은 보안상의 문제로 사용자들의 개인정보가 제한된 상황에서 네트워크의 구조와 속성 정보를 이용하여 서로 다른 소셜 플랫폼에서 동일한 사용자를 찾는 것을 목표로 한다. 본 논문은 최근 몇 년간의 네트워크 정렬 연구들을 서베이 하고, 그들을 분류한 후, 그 중 대표적인 것들에 대한 성능 평가를 수행한다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.2022-0-00352 IITP 방송통신산업기술개발사업, No.2018R1A5A7059549 한국연구재단 CRC, No. RS2022-00155586 실세계의 다양한 다운스트림 태스크를 위한 고성능 빅하이퍼그래프 마이닝 플랫폼 개발(SW 스타랩))

References

  1. S. Zhang and H. Tong, "FINAL: Fast attributed network alignment," in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining (KDD'16), San Francisco, CA, Aug. 2016, pp. 1345- 1354.
  2. T. Man, H. Shen, S. Liu, X. Jin, and X. Cheng, "Predict anchor links across social networks via an embedding approach." in Proc. 25th Int. Joint Conf. Artif. Intell. (IJCAI'16), vol. 16, New York City, NY, Jul. 2016, pp. 1823-1829
  3. F. Zhou, L. Liu, K. Zhang, G. Trajcevski, J. Wu, and T. Zhong, "DeepLink: A deep learning approach for user identity linkage," in Proc. 37th IEEE Conf. Comput. Commun. (INFOCOM'18), Honolulu, HI, Apr. 2018, pp. 1313-1321.
  4. X. Du, J. Yan, and H. Zha, "Joint link prediction and network alignment via cross-graph embedding." in Proc. 28th Int. Joint Conf. Artif. Intell. (IJCAI'19), Macao, China, Aug. 2019, pp. 2251-2257
  5. H. T. Trung, T. Van Vinh, N. T. Tam, H. Yin, M. Weidlich, and N. Q. V. Hung, "Adaptive network alignment with unsupervised and multi-order convolutional networks," in Proc. 36th Int. Conf. Data Eng. (ICDE'20), Dallas, TX, Apr. 2020, pp. 85-96.
  6. J. Gao, X. Huang, and J. Li, "Unsupervised graph alignment with wasserstein distance discriminator," in The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Singapore, August 14-18, 2021, 2021, pp. 426-435.
  7. Q. Sun, X. Lin, Y. Zhang, W. Zhang, and C. Chen, "Towards higherorder topological consistency for unsupervised network alignment," arXiv preprint arXiv:2208.12463, 2022
  8. W. Tang, H. Sun, J. Wang, C. Liu, Q. Qi, J. Wang, and J. Liao, "Identifying users across social media networks for interpretable fine-grained neighborhood matching by adaptive gat," IEEE Transactions on Services Computing, to appear. DOI: 10.1109/TSC.2023.3288872
  9. Jin-Duk Park, Cong Tran, Won-Yong Shin, and Xin Cao. 2022. Grad-Align: Gradual Network Alignment via Graph Neural Networks (Student Abstract). In AAAI. AAAI Press, 13027-13028.
  10. Shao J, Wang Y, Guo F, Shi B, Shen H, Cheng X. CANA: Causal-enhanced Social Network Alignment. InProceedings of the 32nd ACM International Conference on Information and Knowledge Management 2023 Oct 21 (pp. 2219-2228).