

교차 플랫폼 및 네이티브 모바일 앱 개발 접근 방식의

비교 분석

이브로키모브 사도르벡 1, 우균 2
1부산대학교 정보융합공학과

2부산대학교 정보컴퓨터공학부

{sardor, woogyun}@pusan.ac.kr

Comparative Analysis of Cross-Platform and Native Mobile

App Development Approaches

Ibrokhimov Sardorbek Rustam Ugli1, Gyun Woo2
1Dept. of Information Convergence Engineering, Pusan National University

2School of Computer Science and Engineering, Pusan National University

Abstract

Though lots of approaches to develop mobile apps are suggested up to now, developers have difficulties

selecting a right one. This study compares native and cross-platform application development approaches,

particularly focusing on the shift in preference from Java to Kotlin and the increasing use of Flutter. This research

offers practical insights into factors influencing developers’ choice of programming languages and frameworks in

mobile application development by creating identical applications using Java, Kotlin, and Dart (Flutter).

Furthermore, this study explores the best practices for development by examining the quality of code in 45 open-

source GitHub repositories. The study evaluates LOC and code smells using semi-automated SonarQube

assessments to determine the effects of selecting a specific language or framework on code maintainability and

development efficiency. Preliminary findings show differences in the quality of the code produced by the two

approaches, offering developers useful information on how to best optimize language and framework selection to

reduce code smells and improve project maintainability.

1. Introduction

In the field of mobile application development, the choice

of programming language and development framework

significantly impacts the efficiency, maintainability, and

performance of applications. While Java has traditionally been

dominant in Android development, there has been a notable

shift towards Kotlin due to its concise syntax, safety features,

and interoperability with Java [1]. This transition to Kotlin is

significant as it enhances the development process and

contributes to the overall quality of Android applications. The

emergence of cross-platform frameworks such as Flutter,

which allows for a single codebase across both Android and

iOS, further revolutionizes development practices, although

the adoption of such technologies must account for their

impacts on code quality and maintainability, emphasizing the

need for empirical studies to assess these effects [1].

How do Java, Kotlin, and Dart compare in development

experience and code quality for the same application,

particularly regarding code maintainability and development

efficiency? This includes code smells and lines of code (LOC).

The aim is to uncover differences and establish best practices

for future strategies. The industry trend towards frameworks

like Flutter, which streamline development and minimize

separate codebases, responds to the needs of various users and

promotes broader societal benefits through innovative

approaches. However, the choice of language or framework

often hinges on more than developer preference or speed, with

vital factors like code quality and maintainability needing more

empirical study [2][3].

This study aims to evaluate the development experience

and code quality of creating a Kanban board application using

Kotlin, Dart (Flutter), and Java, alongside assessing the

prevalence of code smells in these frameworks across a broad

sample of open-source projects. By analyzing the practical

benefits and drawbacks of each development approach, the

research seeks to understand the shift within the developer

community from Java to Kotlin and the growing interest in

Flutter for cross-platform development. Structured into six

sections, the paper will discuss related research, describe the

ASK 2024 학술발표대회 논문집 (31권 1호)

- 53 -

development and code quality evaluation processes using

SonarQube, present the findings from data collection on code

severity metrics, include a discussion section on the integration

of community-developed tools and potential biases in code

evaluation, and conclude with the implications of these results

for future development practices.

2. Literature Review

The transition from Java to Kotlin in Android development

is motivated by Kotlin's advanced features like null safety,

extension functions, and concise syntax, which collectively

enhance code readability and maintainability. Kotlin's

interoperability with Java and official support by Google

further drive its adoption, despite challenges related to the

learning curve and migration efforts [6]. On the other hand,

Flutter's emergence as a cross-platform framework offers the

advantage of natively compiled applications from a single

codebase across various platforms, supported by its widget-

based architecture and the Dart programming language [7].

However, concerns persist regarding Flutter's performance

compared to native applications and the maturity of its

ecosystem.

The integration of tools like SonarQube in mobile app

development underscores the importance of addressing

technical debt and code smells [8]. Innovations like ecoCode

represent the growing focus on energy-efficient coding,

aligning with the broader trend of sustainable software

development. Comparative studies on development

methodologies reveal the challenges and benefits of

transitioning between frameworks, providing valuable insights

for developers [9]. Evaluating open-source projects yields

insights into different development methodologies, helping to

identify patterns, best practices, and common pitfalls across

various languages and frameworks. However, there remains a

research gap in combining practical development experiences

with in-depth analysis of open-source projects to explore how

methodologies influence code quality metrics such as code

smells and their severity [10].

3. Methodology

3.1 Analysis Steps

In the methodology section of the paper, the analysis was

conducted in three key steps:

Step 1. Project Implementation Across Frameworks:

Development of an identical application using Kotlin, Flutter,

and Java, focusing on comparing efficiencies and experiences

across different app development strategies.

Step 2. Code Inspection: Utilization of SonarQube for code

quality analysis, including the setup with Docker and a

community-developed Dart plugin to facilitate comprehensive

framework analysis.

Step 3. Severity Analysis and Assessment: Evaluation of

issues identified during code inspection, categorized into

severity levels—Blocker, Critical, Major, Minor, and Info—to

help prioritize fixes based on their potential impact.

3.2 Project Implementation Across Frameworks

This section discusses the construction of a Kanban board

app using Kotlin, Dart, and Java, aiming to compare the

development experiences and efficiencies of cross-platform

and native app development. The app features Kanban Board

Visualization, Task Management, and Firebase Integration

[12], highlighting implementation challenges such as third-

party service integration and real-time data synchronization.

The project started with a simple UI designed in Figma,

initially developed with Flutter in Android Studio using

BLOC for state management [14]. This phase lasted 15-20

hours, facilitated by Firebase's compatibility with Google

technologies.

Kotlin followed, applying the MVVM pattern [15] for a

modular design, taking 20-24 hours due to less familiarity.

Java, using Kotlin's XML and Android Studio's tools, required

3-4 hours but needed significantly more code: 21 LOC in Dart,

17 in Kotlin, and 84 in Java [16].

App size comparisons showed Java and Kotlin apps at

11.5MB, while Flutter's app was larger at 21.2MB.

Performance and UI tests across mobile phones revealed

minimal differences. This exploration serves as a practical

comparison of development methodologies, platform-specific

challenges, and strategic decision-making in mobile app

development.

3.3 Code Inspection

SonarQube, an open-source tool by SonarSource, assesses

code quality in 29 languages, identifying bugs and code smells

[17]. In our Kanban project, we used SonarQube to categorize

code smells by severity—Blocker, Critical, Major, Minor, and

Info. Blocker issues are the most severe, potentially causing

critical failures and require immediate attention. Critical

issues, less severe, still need quick resolution, while Major and

Minor issues impact code quality to a lesser extent but should

be addressed. Info issues provide insights but don't demand

urgent action. This severity ranking aids in prioritizing fixes.

Metrics tracked included total code smells and lines of code

(LOC). For Flutter compatibility, we installed Docker [18] and

ran SonarQube in a Docker container with a Dart plugin for

analysis [19].

3.4 Severity Analysis and Assessment.

<Table 1> SonarQube Report for Kanban Board app
 Java Kotlin Flutter

Blocker 0 0 0

Critical 16 7 0

Major 11 3 4

Minor 35 14 18

Info 0 0 0

Total 62 24 22

Customizing the analysis process for Flutter projects

involved some adjustments. Initially, we manually registered

each project in SonarQube, generating a unique token.

ASK 2024 학술발표대회 논문집 (31권 1호)

- 54 -

Subsequently, we set up our Java, Kotlin, and Flutter projects

to compile reports for SonarQube submission. Kotlin and Dart

showed similar LOC—1,467 and 1,515—contrasting with

Java's higher 1,748 LOC. As detailed in Table 1, Both Kotlin

and Dart had comparable Code Smell counts, 24 and 22, with

Dart notably free of Critical issues, mainly presenting Minor

and Major concerns affecting the project minimally. Java

stood out with the most Code Smells—16 Critical, 22 Major,

and 35 Minor—indicating significant concerns. This

comparison necessitates careful interpretation, acknowledging

the influence of developer familiarity with Dart. To ensure

data accuracy, we automated SonarQube analyses for 15

projects per framework, aiming for a balanced and unbiased

evaluation.

4. Results of Comparative Analysis

The comparative study of the Kanban board app in Kotlin,

Dart, and Java, coupled with SonarQube's automated analysis

of 45 open-source projects, provided valuable insights into

code quality, maintainability, and developer productivity. This

section discusses the outcomes of the app development and the

SonarQube assessments.

Kotlin and Dart emerge as notably efficient in their coding

practices, with Kotlin achieving 1,467 LOC and Dart slightly

higher at 1,515 LOC, both outperforming Java's 1,748 LOC.

This efficiency reflects not only in reduced complexity but

also in enhanced maintainability. The evaluation of code

smells further distinguishes these frameworks, with Kotlin and

Dart showing a close count of 24 and 22 code smells

respectively, indicating a comparable level of code quality.

Notably, Dart's codebase stands out for having zero critical

issues, underscoring its robustness in security and stability. In

contrast, Java's codebase demonstrates a broader array of code

smells with 16 critical, 22 major, and 35 minor issues as

depicted in Table 1, suggesting a pressing need for stringent

quality controls. This concise overview encapsulates the

comparative strengths and weaknesses of each framework,

highlighting Dart's exceptional performance in mitigating

critical issues, and underlines the importance of rigorous code

quality management across all platforms.

(Figure 1) Severity Levels by Lines of Code (LOC) in Java, Flutter,

and Kotlin Projects

(Figure 2) Normalized Comparison of Severity Levels in Java,

Flutter, and Kotlin Projects

 Java Projects had a higher total Lines of Code (LOC) at

52,901, with 3,590 code smells. A significant portion of these

were Minor code smells (65%), as depicted in Figure 1 and

Figure 2. Critical (9.5%) and Major (23.3%) issues suggest

potential areas for improvement in application stability and

security.

Kotlin Projects displayed a slightly lower total LOC at

48,865, with 647 code smells. This distribution includes a

higher percentage of Critical issues (18.9%), as shown in

Figure 1 and Figure 2. This indicates that while Kotlin code

bases are generally efficient, there are important areas that

require attention to mitigate potential vulnerabilities.

Flutter Projects exhibited a significantly larger total LOC at

174,044, with 1,303 code smells. They maintained a favorable

distribution of code smells: Minor (58.8%), Major (34.8%),

Critical (6.1%), and Info (0.2%). This distribution underscores

Flutter's capability to manage larger codebases with a

relatively low incidence of critical issues, emphasizing its

suitability for complex application development.

5. Discussion

 This study incorporated a community-developed

SonarQube plugin for Flutter, which was not originally

included in the SonarQube suite. This highlights the flexibility

of SonarQube to adapt to new frameworks through community

contributions, expanding its utility beyond officially

supported languages and tools.

Future research should consider incorporating a broader

array of GitHub projects to enhance the reliability of the

metrics obtained. This expansion could reveal nuanced

insights into code quality and maintenance practices across a

wider spectrum of development scenarios, potentially

identifying trends and exceptions that are not apparent from a

limited dataset.

The current study's limitations include potential biases due

to the developers' varying familiarity with the programming

languages used and differences in platform capabilities that

might affect app performance and maintainability. Addressing

these issues, future research should explore additional metrics

such as runtime efficiency and user experience, and potentially

ASK 2024 학술발표대회 논문집 (31권 1호)

- 55 -

employ machine learning techniques to predict code quality

issues. This proactive approach could help developers

maintain higher standards of code quality and app

performance.

6. Concluding Remarks

Our research explores the landscape of mobile application

development, focusing on the transition from Java to Kotlin

and the adoption of Flutter cross-platform development. The

study involved developing a Kanban board application in Java,

Kotlin, and Dart (Flutter), and evaluating code quality across

various open-source GitHub projects to understand developers’

preferences for programming languages and frameworks.

The finding underscores Kotlin and Dart as efficient

alternatives to Java in terms of LOC and maintainability, with

Dart demonstrating a notable absence of critical code quality

issues. This reflects the advancements these newer

technologies offer over traditional Java, highlighting their

potential to enhance development practices by offering cleaner,

more maintainable code with fewer critical vulnerabilities.

However, it is imperative to approach these results with an

understanding of the nuanced nature of software development.

The choice between cross-platform and native development

approaches is influenced by various factors, including but not

limited to application requirements, developer skill sets, and

project timelines. While Kotlin and Flutter present compelling

advantages, Java continues to be a viable option for certain

development contexts due to its established ecosystem and

broad developer community.

The research advocates for a balanced approach to

framework selection, considering not only the immediate

productivity gains but also long-term maintainability and

security implications. The emphasis on continuous quality

assurance, irrespective of the chosen framework, emerges as a

pivotal factor in the success of mobile application projects.

Future explorations should aim to broaden the scope of

analysis, incorporating additional metrics and larger datasets

to validate and extend these findings, thereby enriching the

decision-making process for mobile application development

further.

References

[1]. Mohamed Abdal Mohsin Masaad Alsaid, “A Comparative

Analysis of Mobile Application Development

Approaches”, Proceedings of the Pakistan Academy of

Sciences: A: Physical and Computational Sciences, pp.

35-45, 2021

[2]. F. Palomba, “On the diffuseness and the impact on

maintainability of code smells: a large-scale empirical

investigation”, Empirical Software Engineering, pp.

1188-1221, 2017

[3]. F. Palomba, “Toward a smell-aware bug prediction

model”, Ieee Transactions on Software Engineering, pp.

194-218, 2019

[4]. Osama M.A. AL-atraqchi, “A Proposed Model for Build

a Secure Restful API to Connect between Server Side and

Mobile Application Using Laravel Framework with

Flutter Toolkits”, cuesj [Internet], 2022

[5]. Péter Hegedűs, “Static code analysis alarms filtering

reloaded: a new real-world dataset and its ml-based

utilization”, IEEE Access 10, pp. 55090-55101, 2022

[6]. M. Martínez and B. Mateus, “Why did developers migrate

android applications from java to kotlin?”, Ieee

Transactions on Software Engineering, pp. 4521-4534,

2022

[7]. A. Mazuera-Rozo, C. Escobar‐Velásquez, J. Espitia-

Acero, D. VegaGuzmán, C. Trubiani, M. Linares-

Vásquezet al, “Taxonomy of security weaknesses in java

and kotlin, arXiv:2201.11807v1, 2022

[8]. G. Hecht, R. Rouvoy, N. Moha, & L. Duchien, “Detecting

antipatterns in android apps”, ACM international

conference on mobile software engineering and systems,

pp. 148-149, 2015

[9]. M. Lamothe, W. Shang, & T. Chen, “A3: assisting android

api migrations using code examples”, Ieee Transactions

on Software Engineering, pp. 417-431, 2022

[10]. Ardito, R. Coppola, G. Malnati, & M. Torchiano,

“Effectiveness of kotlin vs. java in android app

development tasks”, Information and Software

Technology, pp. 106374, 2020

[11]. Flauzino, M., Veríssimo, “Are you still smelling it? A

comparative study between Java and Kotlin language”,

SBCARS, pp. 23-32, 2018

[12]. Anonymous, Firestore Documentation, [Online]. URL:

https://firebase.google.com/docs, last visited on April 9

[13]. Anonymous, Flutter Documentation, [Online]. URL:

https://docs.flutter.dev, last visited on April 12, 2024

[14]. Anonymous, Bloc State Management Library, [Online].

URL: https://bloclibrary.dev, last visited on April 9, 2024

[15]. Sewak J., MVVM Architecture in Android Using Kotlin,

[Online]. URL: https://medium.com/@jecky999/mvvm-

architecture-in-android-using-kotlin-a-practical-guide-

73f8de1d9c58, last visited on April 8, 2024

[16]. Varotariya V., MVVM Architecture Design Pattern for

Android. OneClick IT Consultancy, [Online]. URL:

https://oneclickitsolution.com/blog/choose-android-

mvvm-over-mvparchitecture, last visited on April 9, 2024

[17]. Anonymous, SonarSource Documentation, [Online].

URL: https://www.sonarsource.com/, last visited on April

9, 2024

[18]. Anonymous, Docker, [Online]. URL: https://docker.com,

last visited on April 11, 2024

[19]. Anonymous, Flutter plugin, [Online]. URL:

https://github.com/insideapp-oss/sonar-flutter, last visited

on April 15, 2024

ASK 2024 학술발표대회 논문집 (31권 1호)

- 56 -

