Acknowledgement
This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2014-3-00077).
References
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit and N. Houlsby, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," International Conference on Learning Representations (ICLR), 2021. DOI : 10.48550/arXiv.2010.11929
- Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin and B. Guo, "Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows," Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012-10022, October 2021, DOI : 10.48550/arXiv.2103.14030
- A. Hassani, S. Walton, J. Li, S. Li and H. Shi, "Neighborhood Attention Transformer," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6185-6194, June 2023 DOI :10.48550/arXiv.2204.07143
- https://www.kaggle.com/datasets/frabbisw/facial-age/data