Annual Conference of KIPS (한국정보처리학회:학술대회논문집)
- 2023.11a
- /
- Pages.483-486
- /
- 2023
- /
- 2005-0011(pISSN)
- /
- 2671-7298(eISSN)
DOI QR Code
Mitigiating Data Imbalance via Ensembled Data Augmentation: An Explainable Credit Scoring Models
데이터 증강 기법의 앙상블을 통한 레이블 불균형 해 소: 설명 가능한 신용평가 모델을 중심으로
- Ji-Young Chung (EMRO) ;
- So-Yeon Lee (Dept. of Business Administration, Sookmyung Womens University) ;
- Ye-Lin Yong (Dept. of Economics, Sogang University) ;
- Min-Jun Kim (Dept. of Economics and Finance, Hanyang University)
- Published : 2023.11.02
Abstract
최근 금융 분야는 예측 모델의 복잡성으로 인한 블랙박스 문제와 금융 규제에 대한 관심이 높아지고 있다. 이에 따라 금융 업계는 신뢰성과 투명성을 강조하며, 특히 신용평가 분야에서 설명 가능한 모델 연구가 활발히 진행되고 있다. 또한, 해당 분야에서 소수 클래스에 대해 충분히 학습하지 못하고 다수 클래스에 과적합 될 수 있는 데이터 불균형 문제 역시 강조되고 있다. 이는 제 2종 오류(Type 2 Error)를 최소화해야 하는 상황에서 더욱 부각되며, 대출 상환 능력이 낮은 고객을 최대한 식별해야 하는 개인 신용평가 문제에서 매우 중요한 화두로 떠오르고 있다. 본 논문에서는 어텐션 메커니즘을 활용하여 모델의 설명 가능성을 개선하고, 분석 결과를 해석하는 데 도움이 되고자 한다. 더 나아가, SMOTE, GAN, ADASYN 등 총 다섯 가지 데이터 증강 기법을 실험하여, 이를 앙상블 하였을 때 소수 클래스 레이블에 대한 분류 정확도를 크게 개선할 수 있음을 확인하였다.
Keywords