Federated learning (FL)-based network intrusion detection techniques have enormous potential for securing the Industrial Internet of Things (IIoT) cybersecurity. The openness and connection of systems in smart industrial facilities can be targeted and manipulated by malicious actors, which emphasizes the significance of cybersecurity. The conventional centralized technique's drawbacks, including excessive latency, a congested network, and privacy leaks, are all addressed by the FL method. In addition, the rich data enables the training of models while combining private data from numerous participants. This research aims to create an FL-based architecture to improve cybersecurity and intrusion detection in IoT networks. In order to assess the effectiveness of the suggested approach, we have utilized well-known cybersecurity datasets along with centralized and federated machine learning models.
Keywords
Acknowledgement
This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2023-2020-0-01797) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation) and the MSIT (Ministry of Science and ICT), Korea, under the ICT Consilience Creative program (IITP-2023-2016-0-00318) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation).