Acknowledgement
이 논문은 2023년도 한국과학기술정보연구원(KISTI)의 기본사업으로 수행된 연구입니다.(과제번호: (KISTI)K-23-L01-C03-S01, (NTIS)1711198423)
DOI QR Code
소프트웨어를 개발하거나 실행하는 환경은 매우 다양하다. 최근에 혁신을 이끌고 있는 인공지능 모델은 오픈소스 프로젝트룰 통해 공개되는 코드나 라이브러리를 활용하여 구현하는 경우가 많다. 하지만 실행을 위한 환경 설치 과정이 쉽지 않고, 데이터 혹은 기학습된 모델 사이즈가 대용량일 경우에는 로컬 컴퓨터에서 실행하는 것이 불가능한 경우도 발생하고, 동료와 작업을 공유하거나 수동 배포의 어려움 등 다양한 문제에 직면한다. 이러한 문제를 해결하기 위하여, 소프트웨어가 유연하게 동작할 수 있도록 효율적인 리소스를 관리할 수 있는 컨테이너 기술을 많이 활용한다. 이 기술을 활용하는 이유는 AI 모델이 시스템에 관계없이 정확히 동일하게 재현될 수 있도록 하기 위함이다. 본 연구에서는 인공지능 모델 개발과 관련하여 코드가 실행되는 환경을 편리하게 관리하기 위하여 소프트웨어를 컨테이너화하여 배포할 수 있는 기능을 제공하는 연구소프트웨어 개발 통합 프레임워크를 제안한다.
이 논문은 2023년도 한국과학기술정보연구원(KISTI)의 기본사업으로 수행된 연구입니다.(과제번호: (KISTI)K-23-L01-C03-S01, (NTIS)1711198423)