DOI QR코드

DOI QR Code

Attention Network-Based Recommendation System with Simplified xDeepFM

단순화된 xDeepFM 을 통한 Attention Network 기반 추천 방법

  • Yiwan Zhang (Dept. of Computer Science, Hanyang University) ;
  • Inwhee Joe (Dept. of Computer Science, Hanyang University)
  • 장이완 (한양대학교 컴퓨터소프트웨어학과) ;
  • 조인휘 (한양대학교 컴퓨터소프트웨어학과)
  • Published : 2023.11.02

Abstract

기계 학습에서 데이터 및 기능은 기계 학습의 상한을 결정한다.이러한 기능은 산업 생산에서 과도한 데이터 양과 유형으로 인해 상당한 추가 비용이 발생할 수 있다. 따라서 적절한 특징 처리 방법이 매우 중요해졌다. 대부분의 기존 특징 처리 방법은 특징 엔지니어링을 기능 검색 문제, 즉 모델 성능을 최적화할 수 있는 기능 변환 작업을 검색하는 것으로 추상화한다. 그러나 자동 특징 엔지니어링의 경우 검색량과 변환 조합의 수가 매우 많기 때문에 요인 분해 기반 모델을 사용하여 벡터 곱셈을 통해 상호 작용을 측정하면 조합 특징의 패턴을 자동으로 학습하는 방법이 특히 효율적이다. xDeepFM 은 명확한 방식으로 특징적인 상호작용을 생성하도록 설계된 새로운 Compressed Interaction Network (CIN)를 제안한다. 여기에 제시된 Low-rank Compressed Interaction Network(LRCIN )은 xDeepFM 접근 방식에서 CIN 네트워크의 단순화된 개선을 기반으로 하며 xDeepFM 에 주의 메커니즘을 추가하여 보다 정확하게 예측된다. 실험 결과에 따르면 모델은 계산 복잡성을 단순화할 뿐만 아니라 예측 정확도도 다른 모델보다 훨씬 우수한다.

Keywords