Forecasting of Drought Based on Satellite Precipitation and Atmospheric Patterns Using Deep Learning Model

딥러닝 모델을 활용한 위성강수와 대기패턴 기반의 가뭄 예측

  • 이승연 (중부대학교 토목공학과) ;
  • 홍석재 (중부대학교 토목공학과) ;
  • 박서연 (중부대학교 산학협력단 가뭄연구센터) ;
  • 이주헌 (중부대학교 토목공학과)
  • Published : 2023.05.25

Abstract

가뭄은 가장 심각한 기상 재해 중 하나로 농업 생산, 사회경제 등 다양한 분야에 영향을 미친다. 국내의 경우 광주·전남지역이 1990년대 이후 30년 만에 제한 급수 위기에 처하는 역대 최악의 가뭄으로 지역민들은 심각한 피해가 발생하였다. 유럽의 경우 2022년 당시 500년 만에 찾아온 가뭄으로 인해 3분의 2에 해당하는 지역이 피해를 입었으며, 미국 서부 지역은 2000년부터 2021년까지 1200년 만에 가장 극심한 대가뭄을 겪은 것으로 나타났다. 지구온난화에 따른 기후변화로 인해 가뭄의 빈도와 강도가 증가함에 따라 피해도 커질 것으로 예상된다. 가뭄의 부정적인 영향으로 인해 정확하고 신뢰할 수 있는 가뭄 예측 기술이 필요하다. 본 연구에서는 가뭄예측을 위한 입력변수로서 GPM IMERG (The Integrated Multi-satellitE Retrievals for GPM) 강수량 자료와 NOAA에서 제공하는 8가지 북반구 대기패턴 자료 간의 상관성을 분석하였다. 입력변수 간의 상관성과 중장기 가뭄 예측을 위하여 딥러닝 모델 중 시계열 데이터에서 높은 예측 성능을 보이는 LSTM(Long Short Term-Memory)을 적용하여 가뭄을 예측하고자 한다.

Keywords

Acknowledgement

본 결과물은 행정안전부 재난안전 공동연구 기술개발사업의 지원(2022-MOIS63-001)과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C1013190).