과제정보
본 연구는 한국연구재단 4단계 BK21 사업의 지원을 받아 수행되었습니다.
제트류는 다양한 크기와 운동량의 에디가 복잡하게 혼합되어 이루어져 있으며, 이를 정확하게 모델링하고 이해하기 위해서는 제트류의 다양한 특성들을 잘 반영하여 연구를 수행해야 한다. 다양한 연구 수행 방법 중 수치해석 방법은 상대적으로 공간 및 시간적 비용이 적게 들어서 널리 사용되고 있다. 이러한 수치해석 방법에는 DNS(Direct Numerical Simulation), LES(Large Eddy Simulation), RANS(Reynolds Averaged Navier Stokes) 등이 있으며, 그중 LES는 난류 모델링을 사용하는 RANS 방법에 비해 더욱 정확한 흐름 모델링을 제공하는 장점이 있다. 이러한 LES는 대규모 에디는 직접 해석하면서, 일정 크기 이하의 에디는 모델링을 사용해 해석하는 것이 특징이다. 하지만, LES를 사용하기 위해서는 적절한 그리드 크기를 결정하는 것이 중요하며, 이는 모델의 정확성과 연산 비용에 큰 영향을 미친다. 하지만, 여전히 적절한 그리드 크기를 결정하는 것은 어려운 문제이다. 이러한 LES 모델링을 사용할 때 적절한 그리드 크기를 결정하기 위해서는 정확한 시간 평균 속도 변동을 연구하는 것이 앞서 선행되어야 한다. 따라서, 본 연구에서는 기계학습 기반 접근 방식을 사용하여 난류 제트 내 시간 평균 속도 변동을 예측하는 연구를 진행하였다. 즉, 난류 제트 역학을 이해하는 데 중요한 파라미터인 시간 평균 유속을 이용하여 시간 평균 속도 변동을 예측하는 데 초점을 맞추었다. 모델의 성능은 평균 제곱 오차와 R-제곱 등 다양한 지표를 사용하여 평가되었다.
본 연구는 한국연구재단 4단계 BK21 사업의 지원을 받아 수행되었습니다.