Prediction of Changes in Water Level in Sewage Pipes Using ESN Algorithm Reflecting Spatial Rainfall Characteristics

시공간적 강우특성이 반영된 ESN 알고리즘을 활용한 하수관로 수위 변화 예측

  • 이소현 (강원대학교 방재전문대학원 도시환경재난관리) ;
  • 강동호 (강원대학교 방재전문대학원 AI기후재난융합연구소) ;
  • 김병식 (강원대학교 방재전문대학원 도시환경&재난관리전공)
  • Published : 2023.05.25

Abstract

최근 범 지구적인 기후변화로 인해 집중호우가 빈번히 발생하고 침수피해가 증가하고 있다. 이에 따른 침수 피해 위험이 큰 지하상가, 지하 주차장, 반지하 주택 등의 침수 발생이 잦아지며 인명 및 재산 피해 발생이 커지고 있다. 이러한 지역은 인근 하수관로의 수위에 따라 침수 영향을 크게 받게 된다. 이에 따른 강우·유출 관계는 침수피해에 대해 대처하기 위해 시공간적 강우 특성이 반영된 하수관로 수위 예측이 중요하다고 판단된다. 이에 본 연구에서 수위 자료는 서울시 하수관로 수위 현황 자료를 활용하였으며, 강수량 자료는 서울 내 서초구 일대의 강수량 자료를 활용하여 연구를 진행하였다. 대상 지역은 저지대에 위치해 침수가 잦은 서초구 서초동으로 선정하였으며, 분석에 사용된 기간은 2012년부터 2021년까지의 수위 자료를 화용하여 이를 바탕으로 순환 신경망인 RNN의 일종이며, 다른 모델의 구조와 비교하여 더욱 간단하고 효율적인 ESN(Echo State Network) 알고리즘을 사용하여 수위 예측을 진행하였다. 분석을 위해 대상 지역의 강수 사상이 발생하여 하수관로의 수위의 변동이 큰 기간을 선정하여 분석을 실시하였다. 2012년부터 2018년까지의 자료를 학습(training) 자료로 활용하였으며, 모형의 검증 위해 통계분석을 실시하여 검증하였다.

Keywords

Acknowledgement

이 논문은 행정안전부 재난안전 공동연구 기술개발 사업의 지원을 받아 수행된 연구임(2022-MOIS63-002)