Acknowledgement
이 논문은 2023년도 한국연구재단에 의하여 지원되었습니다. 이에 감사드립니다.
유역에서의 홍수를 예측하기 위한 다양한 강우-유출 모형들이 개발되어 사용되고 있다. 개념적 강우-유출 모형들은 신뢰성과 적용성이 높아 실무에서 널리 활용되어왔으나, 강우-유출 과정을 단순화하여 고려하므로 유출예측의 정확도에 한계가 있다. 또한 모형의 매개변수에 여러 불확실성이 존재하므로 충분한 양의 관측자료를 사용한 보정 작업이 필요하다. 물리적 강우-유출 모형들은 유출예측 결과가 비교적 물리적으로 정확하다는 장점이 있지만, 높은 계산 비용 및 수치적 불안정성으로 인하여 실무에의 적용이 힘들다. 본 연구에서는 홍수 예측의 정확도와 효율성을 모두 확보할 수 있는 하이브리드 기법을 개발하였다. 본 연구에서 개발한 기법은 물리적 모형인 동역학파 모형과 개념적 모형인 순간단위도 모형, 그리고 딥러닝 모형을 결합하여 사용하는 기법이다. 유역의 조도계수 및 지형을 활용한 동역학파 시뮬레이션을 수행하였으며, 동역학파 시뮬레이션 결과 및 멱함수로 나타내어지는 비선형적 강우-유출 관계를 이용하여 유역의 순간단위도를 유도였다. 또한, 딥러닝 모형인 LSTM 모형을 활용하여 강우손실 매개변수를 추정하였으며, 이를 이용하여 강우손실을 계산한 후 유효강우주상도를 산정하였다. 그리고 유역 출구에서의 홍수수문곡선은 유효강우주상도와 순간단위도를 활용한 회선적분을 통해 예측되었다. 본 연구에서 개발한 기법을 시험유역 및 자연유역에서의 홍수 예측에 적용해보았으며, 예측 결과는 NSE=0.55-0.90, R2=0.67-0.95의 높은 정확도를 보였다. 본 연구에서 유도하는 순간단위도는 한 유역에서 유일하지 않으며, 유효 강우강도의 함수이므로 홍수 예측에 비선형적 강우-유출 관계를 고려할 수 있으며, 수많은 유효 강우강도에 대한 순간단위도들은 멱함수를 이용하여 순간적으로 유도될 수 있다. 또한, 유역의 강우 특성이나 지표면의 토양수분, 식생과 같은 특성을 딥러닝 모형을 통해 고려함으로써 강우 손실 산정의 불확실성을 줄일 수 있다. 또한, 순간단위도 유도를 위한 기초작업인 동역학파 시뮬레이션은 유역의 지형과 조도계수만을 필요로 하므로 미계측 유역에의 적용이 유리하다.
이 논문은 2023년도 한국연구재단에 의하여 지원되었습니다. 이에 감사드립니다.