Study on the Image-Based Concrete Detection Model

이미지 기반 콘크리트 균열 탐지 검출 모델에 관한 연구

  • 김기웅 (대진대학교, 건축공학과) ;
  • 유무영 (대진대학교, 건축공학과 )
  • Published : 2023.11.10

Abstract

Recently, the use of digital technology in architectural technology is gradually increasing with the development of various industrial technologies. There are artificial intelligence and drones in the field of architecture, and among them, deep learning technology has been introduced to conduct research in areas such as precise inspection of buildings, and it is expressed in a highly reliable way. When a building is deteriorated, various defects such as cracks in the surface and subsidence of the structure may occur. Since these cracks can represent serious structural damage in the future, the detection of cracks was conducted using artificial intelligence that can detect and identify surface defects by detecting cracks and aging of buildings.

Keywords

Acknowledgement

본 논문은 한국연구재단의 개인기초연구사업(NRF-2021R1G1A1094487)의 지원을 받아 수행된 연구임을 밝히며 이에 감사를 드립니다.

References

  1. 최주희, 김영관, 이한승. CNN 모델을 활용한 콘크리트 균열 검출 및 시각화 방법. 한국건축시공학회. 2022. 제22권 1호. p. 73-74.
  2. 김가윤, 이은찬, 김기홍, 변혜성. 객체탐지모델을 활용한 콘크리트 시설물의 실시간 균열 탐지 시스템에 관한 연구. Proceedings of KIIT Conference. 2022. p. 4-6.
  3. 김지호, 김경영, 김동주. 건축물 점검을 위한 딥러닝 기반의 도메인 적응적 균열 검출 시스템. 한국통신학회논문지. 2023. 제48권 5호. p. 567-580. https://doi.org/10.7840/kics.2023.48.5.567