Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2023.10a
- /
- Pages.690-693
- /
- 2023
- /
- 2005-3053(pISSN)
Korean QA with Retrieval Augmented LLM
검색 증강 LLM을 통한 한국어 질의응답
- Mintaek Seo (Jeonbuk National University) ;
- Seung-Hoon Na (Jeonbuk National University) ;
- Joon-Ho Lim (ETRI) ;
- Tae-Hyeong Kim (KT) ;
- Hwi-Jung Ryu (KT) ;
- Du-Seong Chang (KT)
- Published : 2023.10.12
Abstract
언어 모델의 파라미터 수의 지속적인 증가로 100B 단위의 거대 언어모델 LLM(Large Language Model)을 구성 할 정도로 언어 모델의 크기는 증가 해 왔다. 이런 모델의 크기와 함께 성장한 다양한 Task의 작업 성능의 향상과 함께, 발전에는 환각(Hallucination) 및 윤리적 문제도 함께 떠오르고 있다. 이러한 문제 중 특히 환각 문제는 모델이 존재하지도 않는 정보를 실제 정보마냥 생성한다. 이러한 잘못된 정보 생성은 훌륭한 성능의 LLM에 신뢰성 문제를 야기한다. 환각 문제는 정보 검색을 통하여 입력 혹은 내부 표상을 증강하면 증상이 완화 되고 추가적으로 성능이 향상된다. 본 논문에서는 한국어 질의 응답에서 검색 증강을 통하여 모델의 개선점을 확인한다.