Acknowledgement
이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(RS-2023-00216011, 사람처럼 개념적으로 이해/추론이 가능한 복합인공지능 원천기술 연구)
대화 시스템에서 대화 상태 추적은 사용자와의 대화를 진행하면서 사용자의 의도를 파악하여 시스템 응답을 결정하는데 있어서 중요한 역할을 수행한다. 특히 목적지향(task-oriented) 대화에서 사용자 목표(goal)를 만족시키기 위해서 대화 상태 추적은 필수적이다. 최근 다양한 자연어처리 다운스트림 태스크들이 사전학습 언어모델을 백본 네트워크로 사용하고 그 위에서 해당 도메인 태스크를 미세조정하는 방식으로 좋은 성능을 내고 있다. 본 논문에서는 한국어 토큰-프리(token-free) 사전학습 언어모델인 KeByT5B 사용하고 종단형(end-to-end) seq2seq 방식으로 미세조정을 수행한 한국어 생성 기반 대화 상태 추적 모델을 소개하고 관련하여 수행한 실험 결과를 설명한다.
이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(RS-2023-00216011, 사람처럼 개념적으로 이해/추론이 가능한 복합인공지능 원천기술 연구)