Effective Passage Reranking with Textual Entailment Feedback

Textual Entailment Feedback 기반 효율적인 문서 재순위화기

  • 남성욱 (버즈니AI 연구소, 전북대학교) ;
  • 한동훈 (버즈니AI 연구소, 전북대학교) ;
  • 박은환 (버즈니AI 연구소, 전북대학교) ;
  • 나승훈 (버즈니AI 연구소, 전북대학교)
  • Published : 2023.10.12

Abstract

재순위화기 연구는 주로 파이프라인 과정 설계, 데이터 증강, 학습 함수 개선, 혹은 대규모 언어 모델의 지식 활용 등에 집중되어있다. 이러한 연구들은 좋은 성능 상승을 이끌어주었지만 실제 적용이 힘들 뿐만 아니라 학습 비용이 크게 발생한다는 한계점을 가지고 있다. 더 나아가 주어진 데이터 집합만을 활용해서는 보다 더 세부적인 학습 신호를 주기 어렵다는 단점 또한 존재한다. 최근 자연어처리 분야의 연구에서는 피드백을 인위적으로 생성하여 반영하여 모델 성능 상승을 이끄는 연구가 제안되었다. 본 연구는, 이러한 연구를 바탕으로 질의와 문서 간의 함의 관계 점수를 피드백으로 사용 및 재순위화기 모델로의 반영을 제안한다. 재순위화기 모델에 대해 피드백을 반영하는것은 그렇지 않은 모델 대비하여 성능 상승을 이끌며 피드백 반영이 더 좋은 표상 도출에 도움이 됨을 확인할 수 있다.

Keywords