Atomic Unit-based Post Editing for Hallucination Reduction

환각 현상 완화를 위한 단위 사실 기반 사후 교정

  • Yonghwan Lee (Department of Computer Science and Artificial Intelligence, Jeonbuk National University) ;
  • Jeongwan Shin (Graduate School of Computer Science Engineering, Kyungpook National University) ;
  • Hyun-Je Song (Department of Computer Science and Artificial Intelligence, Jeonbuk National University)
  • 이용환 (전북대학교 컴퓨터인공지능학부) ;
  • 신정완 (경북대학교 컴퓨터학부) ;
  • 송현제 (전북대학교 컴퓨터인공지능학부)
  • Published : 2023.10.12

Abstract

환각 현상이란 LLM이 생성 태스크에서 사실이 아닌 내용을 생성하거나 근거가 없는 내용을 생성하는 현상을 말한다. 환각 현상은 LLM이 생성한 출력물에 대한 사용자의 신뢰를 떨어뜨리기 때문에 환각을 완화할 수 있는 방법이 필요하다. 최근 사후 편집 모델 중 하나인 RARR는 입력 텍스트를 질문들 순서에 따라 순차적으로 편집하여 환각을 완화하였지만 이전 단계의 편집 오류가 전파되거나 같은 작업을 반복하는 등의 단점이 있었다. 본 논문은 환각 현상 완화를 위한 단위 사실 기반 사후 교정을 제안한다. 제안한 방법은 입력 텍스트를 단위 사실로 분해하고 각 사실에 대응하는 질문을 생성한 후 검색된 관련 문서로 환각 여부를 판단한다. 환각이라 판단되면 편집을 수행하여 환각을 완화한다. 병렬적으로 편집을 진행하기 때문에 기존 연구의 순차적인 오류 전파 문제를 해결하고 기존 연구에 비해 더 빠른 사후 편집을 진행할 수 있다. 실험 결과, 제안 방법이 RARR보다 Preservation Score, 원문과의 사실성 일치여부, 의도 보존 여부에서 모두 우수한 성능을 보인다.

Keywords

Acknowledgement

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1048181)