Large Language Models (LLM)의 출현은 자연어 처리 분야의 연구 패러다임을 전환시켰다. LLM의 핵심적인 성능향상은 지시어 튜닝(instruction-tuning) 기법의 결과로 알려져 있다. 그러나, 현재 대부분의 연구가 영어 중심으로 진행되고 있어, 다양한 언어에 대한 접근이 필요하다. 본 연구는 한국어 지시어(instruction-following) 모델의 개발 및 최적화 방법을 제시한다. 본 연구에서는 한국어 지시어 데이터셋을 활용하여 LLM 모델을 튜닝하며, 다양한 데이터셋 조합의 효과에 대한 성능 분석을 수행한다. 최종 결과로 개발된 한국어 지시어 모델을 오픈소스로 제공하여 한국어 LLM 연구의 발전에 기여하고자 한다.
본 연구는 과학기술정보통신부 및 정보통신기술기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음(IITP-2022-2018-0-01405). 이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기술기획평가원의 지원을 받아 수행된 연구임 (No. 2020-0-00368, 뉴럴-심볼릭(neural-symbolic) 모델의 지식 학습 및 추론 기술 개발). 이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1A6A1A03045425).