Difficulty-adjustable Phrase-level Cloze Question Generation System

난이도 조절 가능한 어구 단위 빈칸 추론 문항 생성 시스템

  • Seokhoon Kang (Pohang University of Science and Technology, Graduate School of Artificial Intelligence) ;
  • Gary Geunbae Lee (Pohang University of Science and Technology, Graduate School of Artificial Intelligence)
  • 강석훈 (포항공과대학교 인공지능대학원) ;
  • 이근배 (포항공과대학교 인공지능대학원)
  • Published : 2023.10.12

Abstract

딥러닝을 이용한 언어 모델은 다양한 분야에서 사용되고 있는데, 그 중 교육 분야에선 꾸준히 시험 문항을 자동으로 생성하려는 요구가 존재해 왔다. 그러나 빈칸 추론 문항, 그 중에서도 어구 단위 빈칸 추론 문항은 학습 및 평가 목적으로 널리 쓰이고 있지만, 이를 자동 생성하려는 연구는 상대적으로 드물다. 이에 본 연구에선 masked language modeling (MLM)을 이용한 난이도 조절이 가능한 어구 단위 빈칸 추론 문항 생성 시스템을 제안한다. 본 시스템은 정답 생성 모델의 attention 정보에 따라 지문 내 중요한 어구를 삭제해 오답을 생성하고, 동시에 어구의 삭제 비율을 조절함으로써 더 쉽거나 더 어려운 오답을 만들어낼 수 있다. 평가 결과, 제안한 시스템은 기존 접근법보다 정답과의 유사도가 최고 28.3% 낮았고, 또한 난이도 설정에 따라 쉬운 오답이 어려운 오답에 비해 유사도가 15.1% 낮아, 더 정답과 먼 뜻의 오답을 생성해내었다.

Keywords

Acknowledgement

이 논문은 2023년 (주)엔에스데블의 UBT Technology AI-R&D 예산 재원으로 수행된 연구임 이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2022-0-00223, (세부2) 자폐증 환자의 의사소통 능력 향상을 위한 디지털치료제 개발)