초거대 언어모델은 과연 수수께끼 문제에 재치있는 답변을 할 수 있을까? 최근 초거대 언어모델(Large language model, LLM)은 강력한 성능 및 유저 만족도를 보이며 세계의 이목을 집중시키고 있다. 여러 태스크들에 대한 정량 평가를 넘어서 최근에는 LLM의 창의력 및 고도화된 언어능력을 평가하는 연구들이 등장하고 있다. 본 논문에서는 이러한 연구 흐름에 따라 LLM의 재치에 관해 고찰해본다. 이때 재치를 평가하기 위한 태스크로 이를 요구하는 말놀이인 수수께끼를 활용한다. 본 논문은 LLM이 수수께끼를 잘 수행하는지를 모델 추론을 통해 평가하며, 모델 추론 시 활용되는 프롬프트들의 성격에 따른 성능 변화를 관찰한다. 또한 수수께끼의 종류에 따른 모델의 능력을 비교 분석하며 LLM의 추론 결과에 대한 오류 분석을 수행한다. 본 논문은 실험을 통해 GPT-4가 가장 높은 성능을 보이며, 설명글이나 데이터 예시를 추가할 시 성능을 한층 더 향상시킬 수 있음을 확인한다. 또한 단어 기반보다는 특성 기반의 수수께끼에 더욱 강력한 성능을 보이며, 오류 유형 분석을 통해 LLM이 환각(hallucination) 문제와 창의력을 동시에 가지고 있다고 분석한다.
본 연구는 과학기술정보통신부 및 정보통신기술기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음(IITP-2022-2018-0-01405). 또한 이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1A6A1A03045425). 또한 이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기술기획평가원의 지원을 받아 수행된 연구임 (No. 2020-0-00368, 뉴럴-심볼릭(neural-symbolic) 모델의 지식 학습 및 추론 기술 개발).