Acknowledgement
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(연구개발 제번호 : RS-2023-00225661, 디지털 증거의 증명력 제고를 위한 인과관계 추론 및 표현 기술 개발)
자연어 처리 분야에서 데이터의 중요성이 더욱 강조되고 있으며, 특히 리소스가 부족한 도메인에서 데이터 부족 문제를 극복하는 방법으로 데이터 증강이 큰 주목을 받고 있다. 이 연구는 대규모 언어 모델(Large Language Model, LLM)을 활용한 키워드 기반 데이터 증강 방법을 제안하고자 한다. 구체적으로 한국어에 특화된 LLM을 활용하여 주어진 키워드를 기반으로 특정 주제에 관한 대화 내용을 생성하고, 이를 통해 대화 주제를 분류하는 분류 모델의 성능 향상을 입증했다. 이 연구 결과는 LLM을 활용한 데이터 증강의 유의미성을 입증하며, 리소스가 부족한 상황에서도 이를 활용할 수 있는 방법을 제시한다.
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(연구개발 제번호 : RS-2023-00225661, 디지털 증거의 증명력 제고를 위한 인과관계 추론 및 표현 기술 개발)