Granule-Bound Starch Synthase I (GBSSI): An Evolutionary Perspective and Haplotype Diversification in Rice Cultivars

  • Sang-Ho Chu (Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University) ;
  • Gi Whan Baek (Department of Plant Resources, College of Industrial Sciences, Kongju National University) ;
  • Yong-Jin Park (Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University)
  • 발행 : 2022.10.13

초록

Granule-bound starch synthase I (GBSSI), encoded by the waxy gene, is responsible for the accumulation of amylose during the development of starch granules in rice endosperm. Despite many findings on waxy alleles, the genetic diversity and evolutionary studies are still not fully explored regarding their functional effects. Comprehensive evolutionary analyses were performed to investigate the genetic variations and relatedness of the GBSSI gene in 374 rice accessions composed of 54 wild accessions and 320 bred cultivars (temperate japonica, tropical japonica, indica, aus, aromatic, and admixture). GBSS1 coding regions were analyzed from a VCF file retrieved from whole-genome resequencing data, and eight haplotypes were identified in the GBSSI coding region of 320 bred cultivars. The genetic diversity indices revealed the most negative Tajima's D value in the tropical-japonica, followed by the aus and temperate-japonica, while Tajima's D values in indica were positive, indicating balancing selection. Diversity reduction was noticed in temperate japonica (0.0003) compared to the highest one (wild, 0.0044), illustrating their higher genetic differentiation by FST-value (0.604). The most positive Tajima's D value was observed in indica (0.5224), indicating the GBSSI gene domestication signature under balancing selection. In contrast, the lowest and negative Tajima's D value was found in tropical japonica (-0.5291), which might have experienced a positive selection and purified due to the excess of rare alleles. Overall, our study offers insights into haplotype diversity and evolutionary fingerprints of GBSSI. It ako provides genomic information to increase the starch content of cooked rice.

키워드

과제정보

This work was supported by National Research Foundation of Korea (NRF) grants by the Korean government (MSIT) (No. NRF-2022R1A4A1030348), "Cooperative Research Program for Agriculture Science and Technology Development" (Project No. PJ015935) of the Rural Development Administration, and Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET), Ministry of Agriculture, Food and Rural Affairs (MAFRA)(322060031HD020).