Acknowledgement
이 논문은 2022 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. 2021-0-00907, 능동적 즉시 대응 및 빠른 학습이 가능한 적응형 경량 엣지 연동분석 기술개발)
DOI QR Code
최근 데이터 획득 위치에 가장 근접하고, 저 수준의 계산력을 제공하는 엣지 기기를 중심으로 직접 딥러닝 추론을 수행하고자 하는 요구가 증가하고 있다. 본 논문에서는 드론에서 촬영한 교통 영상 데이터를 기반으로, 다수의 차량 종류 및 보행자를 식별하는 모델을 Jetson Nano 에 탑재하여 기본 성능을 측정한다. 더불어, 자원제약형 기기 환경에서 TensorRT 와 Deepstream 을 활용하여 객체 식별 모델의 연산 경량화 및 추론 가속화 성능을 극대화하기 위한 구현 및 실험을 수행하여 Anchor-based 및 Anchor-free 객체 식별 모델의 정확도와 실시간 대응력을 평가하고 논의한다.
이 논문은 2022 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. 2021-0-00907, 능동적 즉시 대응 및 빠른 학습이 가능한 적응형 경량 엣지 연동분석 기술개발)