Acknowledgement
본 연구는 보건복지부의 재원으로 한국보건산업진흥원의 보건의료기술 연구개발사업(HI22C0787) (HI18C1216)의 지원으로 수행함.
DOI QR Code
삼킴 장애 환자는 뇌졸중, 치매, 외상성 뇌손상, 파킨슨병, 암이 주요 원인으로 급속히 증가하고 있다. 특히 고령화 사회가 되면서 더욱 삼킴 장애 환자는 늘어날 것으로 전망하고 있다. 고령 환자의 삼킴 이상의 진단을 위해 가장 많이 사용하고 있는 검사법으로는 비디오 조영 삼킴 검사(VFSS)이다. VFSS는 진단에 있어서 숙련된 전문의가 필요하기 때문에 대학병원 급에서 주로 시행하며, 고령 환자에게는 분석 결과를 상담받을 때까지 오랜 시간을 소요해야하는 문제점들이 있다. 본 논문에서는 삼킴 장애 진단을 위한 의료영상 관리 및 라벨링 시스템에 대해서 기술한다. 이를 구현하기 위해 서버에서 대용량 멀티프레임 영상을 성능 저하 없이 핸들링 하고 라벨링 데이터 생성을 위한 라벨링 툴을 구현하였다. 차후 라벨링 데이터를 생성하고 학습을 통하여 삼킴 장애 진단을 위한 인공지능 모델을 개발하고자 한다.
본 연구는 보건복지부의 재원으로 한국보건산업진흥원의 보건의료기술 연구개발사업(HI22C0787) (HI18C1216)의 지원으로 수행함.