과제정보
This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No.2018-0-00264, Research on Blockchain Security Technology for IoT Services).
DOI QR Code
암호화 프로그램에서 난수생성기는 널리 사용되며 중요한 역할을 하므로 공격의 대상이 되기 쉽고, 따라서 높은 난수성을 확보해야 한다. 최근에는 인공 신경망 기술이 발달함에 따라 난수생성기에 딥러닝 기술을 적용하는 연구들이 다수 진행되었으며, 본 논문에서는 이러한 연구 동향에 대해 알아본다. 크게 난수를 생성하는 연구와 다음에 올 수를 예측하는 예측 공격으로 나뉜다. 공통적으로는 학습해야 할 대상인 난수가 시계열 데이터이므로 대부분의 연구들이 RNN, CNN-1D 신경망을 사용한다. 난수 생성을 위해서는 분류형 신경망이 아닌, 생성형 신경망과 강화학습을 주로 사용하였다. 대부분의 연구들이 NIST SP-800 테스트를 시행하였을 때 높은 난수성을 확보할 수 있었다. 이외에도 최근 양자 컴퓨터가 개발됨에 따라 양자 하드웨어로부터의 양자 난수 생성기에 대한 예측 공격에 관한 연구도 있다. 딥러닝 기반의 난수 생성기에 대해서, 향후에는 기존의 난수생성기보다 빠른 생성 속도를 달성할 수 있는 경량 구현에 대한 연구와 그에 대한 비교 및 평가가 있어야 할 것으로 생각된다.
This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No.2018-0-00264, Research on Blockchain Security Technology for IoT Services).