Acknowledgement
This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No.2018-0-00264, Research on Blockchain Security Technology for IoT Services).
DOI QR Code
텍스트를 기반으로 하는 패스워드는 다방면에서 가장 많이 사용되고 있는 인증 수단이다. 하지만 이러한 패스워드는 사용자의 기억에 의존하기 때문에 사람들은 일반적으로 기억하기 쉽게 '!iloveY0u'와 같은 암호를 사용한다. 이로 인해 사용자들의 패스워드 간에 규칙성이 생기게 되어 HashCat과 같은 크래킹 도구에 의해 해킹될 수 있다. 딥러닝을 통한 패스워드 예측의 경우, 일반적인 패스워드 크래킹 도구와 달리 패스워드 구조 및 속성에 대한 사전 지식 및 전문적 지식 없이도 패턴을 추출하고 학습할 수 있어 활발히 연구되고 있다. 본 논문에서는 딥러닝 모델 중에서도 순환 신경망을 사용하여 텍스트 기반의 패스워드를 예측하는 연구의 동향에 대해 알아본다.
This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No.2018-0-00264, Research on Blockchain Security Technology for IoT Services).