Acknowledgement
이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C1007400).
DOI QR Code
산업용 설비의 결함을 예측하기 위해 기기에 탑재된 다양한 센서의 시계열 데이터를 이용한 결함 진단 연구가 확대되고 있다. 센서의 시계열 데이터는 값의 특성이 명확하지 않을 경우, 특징 추출이 제한적이지만, 주파수 영역으로 변환하면 진폭, 피크 주파수 등 데이터의 정보를 다각도로 담고 있어 특성을 추출하는 데에 이점이 있다. 따라서, 본 논문은 FFT(Fast Fourier Transform) 기법을 이용해 분해된 데이터를 조합하여 학습에 적용하는 선택적 FFT 기법을 제안한다. 제안 기법은 협동 로봇의 진동 신호를 이용한 결함 진단에 적용하였으며, 기존 결함 진단 정확도 대비 최대 41.81% 향상된 성능을 보였다.
이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C1007400).